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List of Key Terms 
 
Transportation infrastructure planning: Transportation infrastructure planning can be defined 
as the process of making decisions concerning the potential changes required for transportation-
related infrastructures to improve the quality of life. 

Future-proofing: The process of anticipating the distant future, factors that may affect it, and 
taking actions to minimize risks and maximize opportunities for value realization. 

Text mining: Text mining is a sub-discipline of data mining that extracts interesting information 
and knowledge from unstructured or semi-structured text. 

Topic modeling: Topic modeling is an unsupervised machine learning technique that is 
primarily used for document clustering.  

Association rule mining: Association rule mining is a procedure that aims to observe frequently 
occurring patterns or associations from datasets found in various kinds of databases, such as 
relational databases, transactional databases, and other forms of repositories. 

Taxonomy: Taxonomy is the practice and science of categorization or classification in which 
things are organized into groups or types.  

Inter-relationship: Inter-relationship refers to the process concerning how two or more 
planning factors are connected and affect one another. 

Present Serviceability Rating (PSR): PSR is a surface-condition rating scheme developed by the 
American Association of State Highway Officials (AASHO), which is based on a numeric scale 
between 0 and 5. 

Annual Average emission: It refers to the lb of 𝐶𝑜  equivalent generated from vehicles on 
average in a given year. 

ESAL: ESAL is the acronym for equivalent single axle load. It refers to an 18,000 pound load on 
a single axle with dual tires. 

CESAL: CESAL is the acronym for cumulative equivalent single axle load. It measures the 
cumulative weights arising from different types of vehicles operating on the same road over a 
specific time period.  

EV: EV is the acronym for electric vehicles. 

CV: CV is the acronym for conventional fuel vehicles. 

ET: ET is the acronym for electric trucks. 

CFT: CFT is the acronym for conventional fuel trucks. 
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Abstract 
 
Transportation infrastructure planning is a complex process, which requires the consideration of 
a multitude of factors. While many existing studies have investigated the impacts of different 
factors individually, a holistic framework that encompasses a comprehensive list of influencing 
factors on transportation infrastructure planning and their inter-relationships is still missing. 
Especially, many forward-looking factors are often overlooked in current planning frameworks. 
To this end, this study aims to develop a future-proofed transportation infrastructure planning 
framework with a focus on roadways, bridges, and transit. Three parts of work are included in this 
study: (1) First, a list of important and emerging factors that affect or may affect transportation 
infrastructures was identified from 48 published technical reports and journal articles on future-
proofed transportation infrastructure planning via two topic modelling techniques: Latent 
Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF). These factors were 
later compiled and converted to a four-level taxonomy via bottom-up grouping. For example, 
public transportation programs and public-private partnerships were grouped together as the two 
primary sources of funding for transportation infrastructures. (2) Second, association rule mining 
(ARM) was then used to discover relationships among these factors. Specifically, two quantitative 
association rule mining metrics: confidence (frequency of association) and lift (strength of 
association were used. In total, 102 inter-relationships were identified, among which eight inter-
relationships were found to be significant. For example, a significant association was found 
between societal trends with environmental performance. It implies that in order to achieve a 
better environmental performance of transportation infrastructure, capturing and taking 
advantage of societal trends could be useful, since societal trends such as less dependency on 
personal vehicles can significantly reduce the environmental impact of transportation 
infrastructures (e.g., less emission). (3) Finally, based on the significant association rules 
identified between new technology and other factors, two case studies were conducted to quantify 
the impacts of the electric vehicle as an example of new technologies on different aspects of 
transportation infrastructure. Quantitative scenario analysis was performed to facilitate informed 
decision-making under uncertainty. This framework has the potential to turn into a smart decision-
making system that can help transportation infrastructure owners, designers, builders, 
governments, and operators to have a holistic approach to plan, build, and manage our 
transportation infrastructures in the face of future risks and uncertainties. 
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Chapter 1: Introduction  
 

1.1 Problem Statement 
Transportation infrastructure is one of the most important determinants of a country's progress. 
The USA is no different, and the $20 trillion economy relies heavily on a vast network of 
infrastructures such as roads, bridges, freight rails, and ports (McBride and Moss 2020). However, 
the existing transportation infrastructure systems were built decades ago and are in poor condition. 
According to ASCE’s 2021 infrastructure report card, the U.S.’s overall infrastructure grade was 
C- (ASCE 2021). Among the different infrastructure categories that were considered, roads, 
bridges, and transit received grades of D, C, and D-, respectively.  The majority of the economists 
agree that transportation delays and rising maintenance costs are holding USA’s economic 
performance back. By increasing transportation infrastructure efficiency and reliability, the long-
term competitiveness of the USA can be significantly enhanced, which can potentially insulate the 
economy from disruptions (Petroski 2016).  

Transportation infrastructure planning is the process of making decisions regarding 
transportation infrastructure design, construction, maintenance, and operation to improve people’s 
quality of life (Chowdhury and Zhu 2019). Transportation infrastructure planning is a complex 
process. This process can arguably become more challenging when incorporating future events 
and changes into consideration. With the ever-increasing occurrence of unexpected or 
uncontrollable events (e.g., various types of natural disasters) and rapid development of modern 
technologies (e.g., autonomous and connected vehicles), there is a pressing need to future proof 
transportation infrastructure systems so that they can be fit for the future in addition to satisfying 
current needs (Chowdhury and Zhu 2021).  If transportation infrastructure planning is conducted 
in a silo with only a few dimensions, it can result in inefficient funding allocation, inaccurate travel 
demand forecasting, unpopular and unwarranted transportation project initiation, and many more. 
The scope of transportation infrastructure planning should be multi-dimensional as a multitude of 
factors may affect transportation infrastructure (e.g., innovation and public perception). Moreover, 
it should consider and quantify the inter-relationships among different factors as the effect of 
multiple factors may be combined and demonstrate a unique effect on transportation infrastructure. 
Essentially, a lack of consideration of such inter-dependencies can lead to planning agencies not 
having a plan of action against the potential combined effect of different factors. In essence, a 
holistic understanding of critical factors and their inter-relationship is needed that can minimize 
undesirable impacts and capitalize on opportunities of transportation infrastructure in the face of 
future events, changes, and opportunities. 

1.2 Objectives 
To achieve a transportation infrastructure system that meets the challenges of the 21st century, a 
holistic approach to transportation infrastructure planning is needed. Holistic transportation 
infrastructure planning can contribute to increasing efficiency and reliability by accurately, 
critically, and objectively defining future policies, goals, investments, and designs to prepare for 
future needs regarding the movement of people and goods (Transportation Planning Capacity 
Building Program 2015). Three research objectives were proposed in this study that can lead to 
holistic transportation infrastructure planning: 
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Objective 1: Identify the critical factors that currently impact transportation infrastructure or may 
impact in the future; 

Objective 2: Identify the inter-relationships and quantify them in order to capture the effect of one 
factor on the implementation of other factors as well as the strength of the effect; 

Objective 3: Develop computational simulation models that can be used to facilitate future-
proofed transportation infrastructure planning decision-making. 

1.3 Expected Contributions 
The potential contributions of this project are threefold. First, this project provides a systematic 
way to understand and classify future risks and opportunities via identifying critical factors that 
should be carefully incorporated into transportation infrastructure planning. Second, this research 
helps to quantify the associations among future-proofed factors and helps pinpoint strong inter-
dependencies that need attention. Third, this research introduces an innovative computational 
approach to discover new knowledge and hidden relationships in transportation infrastructure 
planning. Ultimately, planners and decision-makers at federal, state, and local levels can benefit 
as this research provides a technical guideline to understand critical factors and their 
interdependency and incorporate them into planning actions in order to plan, build, and manage 
our transportation infrastructures. 

1.4 Report Overview 
Chapter 2 briefly discusses existing research on transportation infrastructure planning and the 
underlying technique used to carry it out in this research: text mining. Chapter 3 presents the 
proposed method for identifying future-proofing critical factors and the results. Chapter 4 presents 
the proposed method for quantifying inter-relationships among the future-proofing critical factors 
and also highlights the most significant inter-relationships. Chapter 5 demonstrates the potential 
impacts of inter-relationships in transportation infrastructure using computational scenario 
analysis. Chapter 6 provides key managerial insights identified from this research alongside 
potential future research directions.  
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Chapter 2: Literature Review 
 
This section details the existing literature on two key aspects of this project, i.e., transportation 
infrastructure planning and text mining. Essentially, the knowledge gaps concerning transportation 
infrastructure planning and the potential contributions of this research are discussed in section 2.1. 
Existing studies using text mining techniques for different transportation-related contexts and the 
potential of text mining techniques in transportation infrastructure planning are discussed in 
section 2.2.  

2.1 Transportation Infrastructure Planning 
Existing studies in transportation infrastructure planning mostly adopt fragmented approaches that 
are lacking in two important aspects. First, most of these studies focused only on one or a few 
factors and their effects on transportation infrastructures. Examples of such factors include funding 
(Cradock et al. 2009; Chase, 2011; Gransberg et al. 2013; Wood & Brown, 2019), traffic 
throughput and volume (Xu et al. 2013; Song et al. 2019; Xiao et al. 2019; Hardegen et al. 2019), 
land use (Badoe and Miller 2000; Waddell 2011; Hawkins and Nurul Habib 2019), and public 
participation (Majumdar 2017). Such studies contributed to knowledge development on how 
individual factors affect transportation infrastructure planning. However, without a comprehensive 
list of all important factors, systematic transportation infrastructure planning is hard to achieve and 
planning could be conducted in silo. Especially, existing studies mostly focused on solving current 
problems while failing to put enough emphasis on future-proofing factors, such as future changes 
and associated uncertainties (Moon et al. 2009; Alderson et al. 2018). Future-proofing can be 
defined as the process of anticipating the distant transportation future, factors that may affect it, 
and taking actions to minimize risks and maximize opportunities for value realization. If future 
needs are not addressed, the benefits of transportation infrastructure planning can only be realized 
in the short term and may require substantial additional investment and planning modifications to 
meet future needs. 

 Second, most of these studies did not consider the inter-relationships among different 
factors (Handy and McCann 2010). Different planning factors may be interdependent and have 
significant impacts on one another. For example, societal trends (e.g., pursuing a green lifestyle) 
can be important drivers for the adoption of new technologies (e.g., electric and autonomous 
vehicles) in transportation. These technologies will transform traditional transportation 
infrastructure through different investment, development, and maintenance plans. The 
performance of next-generation transportation infrastructure will then influence people’s 
perception and reinforce certain social values in turn. Therefore, it is important to consider the 
close relationships between various transportation infrastructure planning factors, such as new 
technologies and societal trends. 

2.2 Text Mining 
Text mining is a sub-discipline of data mining that extracts interesting information and knowledge 
from unstructured or semi-structured text (Gupta and Lehal 2009). In transportation-related 
domains, text mining techniques have been used for various purposes such as identifying the 
contributing factors to rail, maritime, and aviation accidents, identifying the types of construction 
work that lead to a lane closure, stakeholder opinion classification in transportation projects, and 
bridge deterioration prediction (Kuhn 2018; Sun and Yin 2017; Brown 2016; Park et al. 2018; Liu 
and El-Gohary 2020; Liu and El-gohary 2018; Lv and El-Gohary 2017; Liu and El-Gohary 2017). 
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These studies primarily used published reports, social media data, and scholarly articles to 
implement text mining techniques to gain useful insights into their particular research context. 
Text mining can help identify (1) the key concepts and the main entities (e.g., DOT) described in 
the large text corpus, as well as their relationships with minimum human intervention, (2) can be 
applied with different formats text appears in, and (3) help unlock hidden information that can lead 
to new knowledge and improved understanding. 

Such benefits and applicability of text mining techniques make them suitable for being 
applied in the transportation infrastructure planning domain. However, text mining techniques 
have not been applied to identify and examine a broad spectrum of critical factors and their inter-
relationships. Transportation-related text documents encompass a wide variety of concepts (e.g., 
funding, technological innovation), entities (e.g., U.S. department of transportation (DOT), private 
agencies), and focus (e.g., strategic plans, vision statements). These text documents have different 
formats such as technical reports and scholarly articles. Integrating information from all these text 
documents with varying substances could result in large text datasets with a high number of 
variables, which makes manual processing to get key insights challenging. To this end, this study 
explored the potential of adopting text mining techniques as a new and efficient way toward the 
development of a future-proofed infrastructure planning framework.  
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Chapter 3: Future-proofing Critical Factor Identification 
 

3.1 Topic Modeling 
Topic modeling is an unsupervised machine learning technique that is primarily used for document 
clustering. Topic modeling is capable of finding out a text body’s latent semantic structures (Wang 
and Taylor 2019). Essentially, it can scan documents, detect words and phrase patterns within 
them, and automatically cluster word groups and similar expressions (Lim et al., 2017). Topic 
modeling has been implemented in various transportation domain problems, such as extracting 
relevant semantics (e.g., traffic conditions, road conditions) from social media (Lau 2017), 
discovering representative and interpretable activity categorization from individual-level 
spatiotemporal data (Zhao et al. 2020), and sentiment analysis by extracting meaningful 
information from social network platforms (Ali et al. 2019). Topic modeling was adopted in this 
study to identify the important topics compiled across the large text datasets produced by different 
transportation planning authorities that often cover a variety of topics, resulting in a complex 
semantics structure.  

 Two topic modeling techniques: LDA and NMF were implemented in this study. Latent 
Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF) are two of the most 
popular topic modeling techniques used for identifying important topics from large text data as 
they are (1) fast and easily implementable methods for text mining, (2) do not require previously 
established labels or training data, (3) can reduce the dimension of text datasets, and (4) provide 
most relevant topics from large text datasets (Kuhn 2018). LDA is based on generative 
probabilistic modeling, while NMF relies on multivariate analysis and linear algebra (Chen et al. 
2017). While LDA and NMF have significantly different theoretical structures, both models are 
capable of returning the most pertinent topics in a record. Both of these models were implemented 
in this study. The results were compared to ensure that a comprehensive list of concepts could be 
developed. Both LDA and NMF considered each sentence in the text files as a unique record and 
created topics accordingly. The algorithm and implementation procedure of LDA and NMF are 
provided below.  

3.1.1 Latent Dirichlet Allocation (LDA) 
The modeling process of LDA can be described as finding a mixture of topics from a text corpus 
with 𝐷 records. In general, LDA begins with a random assignment of topics to each word and 
iteratively improves the assignment of topics to words. Assuming there are 𝑊 words across the 𝐷 
records, the allocation of words across K different topics can be achieved following the steps 
described below (Wang and Taylor 2019):  

Step 1: Loop through each record 𝑑 ∈ 𝐷  and randomly assign each word in 𝑑 ∈ 𝐷  to one of 
the 𝑘 ∈ 𝐾 topics. 

Step 2: For each record 𝑑 ∈ 𝐷, loop through each word 𝑤 ∈ 𝑊 and compute: (1) the proportion 
of words in 𝑑 ∈ 𝐷  that are currently assigned to topic 𝑘:  𝑝 𝑘|𝑑 ; and (2) the proportion of 
assignments to topic 𝑘 ∈ 𝐾 over all 𝐷 records that come from the word 𝑤: 𝑝 𝑤|𝑘 . 

Step 3: Update 𝑝 𝑤|𝑘, 𝑑  such that 𝑝 𝑤|𝑘, 𝑑 𝑝 𝑘|𝑑 ∗ 𝑝 𝑤|𝑘 . 

Step 4: Loop through each word 𝑤 ∈ 𝑊  in each record 𝑑 ∈ 𝐷, and reassign the topic for the 
currently selected word based on 𝑝 𝑤|𝑘, 𝑑 . 
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Step 5: Repeat steps 2-4 a large number of times to reach a steady state solution.  

 
3.1.2 Non-negative Matrix Factorization (NMF) 
NMF approximates a nonnegative data matrix 𝑋 with a low-rank matrix such that  

                   𝑋 : , 𝑛 ∑ 𝑉 : , 𝑘 𝐻 𝑘, 𝑛      𝑤𝑖𝑡ℎ 𝑉, 𝐻 0                                                (1) 

where 𝑟 is the rank of 𝑋, and each entry 𝑚, 𝑛  can be interpreted as the number of times the 𝑚𝑡ℎ 
word appears in the 𝑛𝑡ℎ 𝑑 ∈ 𝐷. It must be noted that since the weights in the linear combinations 
are nonnegative (i.e., 𝐻 0 , only the union of the sets of words defined by the columns of 𝑉 can 
be used to reconstruct the original records. Hence, the columns of matrix 𝑉 can be interpreted 
as topics coded across different words. Matrix 𝐻 illustrates how to sum contributions from 
different topics to reconstruct the word mix of a given original record. This means that given a set 
of records, NMF identifies topics and simultaneously classifies the records among these different 
topics. The ultimate goal is to find the best possible factorized matrixes that minimize the following 
objective function  

                                       ||𝑋 𝑉𝐻||,                                                                            (2) 

NMF will modify the initial values of 𝑉 and 𝐻 so that the matrix multiplication approaches 𝑋 until 
either the approximation error converges or the max iterations are reached. Figure 1 shows the 
conceptual illustration of LDA and NMF, respectively. 

 

Figure 1. Conceptual illustration of (a) LDA and (b) NMF 

3.2 Future-proofing Critical Factor Identification Steps 
Future-proofing critical factor identification consists of two steps: (1) data collection and pre-
processing and (2) taxonomy development. 
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3.2.1 Data Collection and Pre-processing 
First, published documents related to transportation infrastructure planning were collected by 
using Google and Google Scholar search engines. The following keywords were used during the 
search: transportation planning vision, transportation long-term plan, strategic transportation plan, 
intelligent transportation system, transportation agency plan, and smart transportation planning. 
The goal was to collect a broad spectrum of views on the transportation infrastructure planning 
needs, policies, challenges, and opportunities in different parts of the U.S. In total, 48 documents 
whose focus areas cover most states of the U.S. were identified and used for this study (Figure 2). 
Table 25 in Appendix (A1) lists all the documents considered in this study. These documents 
included transportation vision statements, long-term regional transportation plans, infrastructure 
strategic investment plans, and several scholarly journal articles. These documents were developed 
by a variety of bodies such as state DOTs, local and regional transportation agencies, legislative 
bodies at the city level, external consultants, and renowned academic scholars. To obtain the most 
relevant text from these documents, data pre-processing was conducted by searching the keyword 
“infrastructure” within each document. Paragraphs with an infrastructure focus were extracted 
from each document and collated into separate text files as records. These text files were then 
further processed to eliminate the possibility of encoding errors. For example, different 
punctuation marks (e.g., apostrophe characters, hyphen) and ASCI characters (e.g., $, * ) were 
removed from the text files. 

 
Figure 2. Focus areas of documents collected in this study 

3.2.2 Taxonomy Development 
In this step, topic modeling techniques were applied to the text files generated in the last step. 
Based on the topics identified, a four-level taxonomy for future-proofed transportation 
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infrastructure planning was then developed. The taxonomy developed provides a clarified 
conceptual and theoretical framework to integrate the large variety of topics under the future-
proofed transportation infrastructure planning theme (Hakeem and Shah 2004).  

 Each text file was analyzed by both LDA and NMF using the machine learning library 
Scikit-learn in conjunction with Python 2.7.0, returning a set of topics as output. The topics were 
identified based on estimating the (1) probability distributions for topics in documents, (2) 
probability distributions for words in topics, and (3) term frequency-inverse document frequency. 
Related python code is available in Appendix A3. Each topic is represented as a list of words. A 
sample output of the topic models is provided in Table 1. This example topic identified by NMF 
covered a set of 5 words that included private, public, sector, partnership, and payments. A similar 
topic identified by LDA covered a set of 5 words that included public, infrastructure, private, 
program, and transportation. Although the words are slightly different in the results generated by 
NMF and LDA, by reviewing the contexts, it was evident that both results were primarily related 
to an alternative source of transportation infrastructure funding, i.e., public-private partnership 
programs and the flexibility they provide. Therefore, they can be consolidated into one primary 
topic as “public-private partnership.” Essentially, for each text file, five top topics were identified 
using LDA and NMF independently. Table 2 presents the ten topics identified in total via NMF 
and LDA with five representative words after analyzing a text file. Each of these topics primarily 
corresponds to a major theme or concept that was discussed in the text file. Topics generated using 
NMF and LDA were ultimately compared and consolidated into a final list of transportation 
infrastructure planning factors. 

 After identifying a comprehensive list of topics from all the documents, a bottom-up 
approach was used for grouping topics with similar themes under broader topics or concepts until 
a structured hierarchy of knowledge was built. For example, crash, terrorism, and cyber-attack 
were identified as the major man-made disruptions/risks in the transportation infrastructure sector 
(New Mexico Department of Transportation 2015). Six types of natural disruptions/risks that 
included drought/heatwave, rising sea level/flooding, wildfire, landslide, earthquake, and cold 
winter weather were also identified as major threats to transportation infrastructure (Washington 
Department of Transportation 2017). Naturally, the two topics: man-made disruptions/risks and 
natural disruptions/risks were further grouped into a general theme of Disruptions/risks. In this 
study, four levels (i.e., level 0, level 1, level 2, and level 3) in total were identified in the taxonomy 
to organize all the important concepts in a structured way. Level 3 is the lowest level with the 
finest granularity, followed by level 2, level 1, and finally, level 0. Figure 3 illustrates the four-
level taxonomy developed in this study. In total, there were six level-1 topics identified under 
“Future-proofed Transportation Infrastructure Planning,” each with a number of level-2 and level-
3 topics. 
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Table 1. A sample output of the application of topic models (Oklahoma Department of 
Transportation 2010)  

Topic 
Model 

Topic 
Example 

Contexts 

NMF 

Private, 
public, sector, 
partnership, 
payments 

 

 In its simplest form, a public-private partnership is an 
agreement between public and private sector parties that 
transfers infrastructure delivery functions to private entities. 

 Depending on the restrictions of the public sector, this 
approach may close the gap on under-funded projects without 
raising taxes. 

 The most successful partnerships have included the transfer 
of both risk and responsibility together. 

 For example, the private partner in a toll road has the 
potential to profit from the venture but also risks a loss if toll 
revenues do not equal projections. 

 Restrictions on public sector debt capacity have been another 
reason why some public agencies have entered into public-
private partnerships. 

 Many reasons have been offered as to why a DOT should 
consider using a public-private partnership approach.

LDA 

Public, 
infrastructure, 

private, 
program, 

transportation 

 In its simplest form, a public-private partnership is an 
agreement between public and private sector parties that 
transfers infrastructure delivery functions to private entities. 

 The most successful partnerships have included the transfer 
of both risk and responsibility together. 

 For example, the private partner in a toll road has the 
potential to profit from the venture but also risks a loss if toll 
revenues do not equal projections. 

 Many reasons have been offered as to why a DOT should 
consider using a public-private partnership approach. 

 Because of inadequate Highway Trust Fund revenues, 
explore various alternatives for funding the States surface 
transportation program, such as consider weight and vehicle 
miles travelled for fuel tax; fund transportation capital 
improvements from the (Federal) general fund; increase car 
tag fees; index the motor fuel tax to inflation; and charge user 
fees to provide maintenance funds for freight-related 
infrastructure. 

 Oklahoma Department of Transportation participates in the 
federally funded reimbursement program, Safe Routes to 
School (SRTS), which encourages students and their parents 
to make biking or walking to school a routine activity instead 
of driving.
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Table 2. Sample output from a text file (City of Largo 2010) 

Topic 
Model 

Topics 
Major theme/concept 

NMF 

Vehicles, infrastructure, 
damage, minimize, 

transportation 

Infrastructure damage due to traffic vehicle type and 
volume 

Florida, global, 
integrated, growth, plan 

Need and benefits of an integrated and forward-looking 
transportation infrastructure planning 

Community, regional, 
plans, visions, 
development 

Developing transportation plans reflecting community 
values 

Safety, security, 
transportation, modes, 

emergency 

Need for a comprehensive approach to safe and secure 
transportation across all transportation modes 

Areas, systems, urban, 
rural, economic 

The link between transportation systems in rural and urban 
areas and their economic vitality

LDA 

Infrastructure, people, 
freight, increase, critical 

Increasing the efficiency and reliability of travel for people 
and freight 

Transportation, growth, 
objectives, performance, 

local 

Evaluation of transportation objectives against predefined 
performance measures 

Transportation, 
resources, facilities, 

community, responsible 

Planning and developing transportation facilities after 
coordinating and communicating with different  
community resources

Transportation, 
infrastructure, systems, 

security, safety 

Need for a comprehensive approach to enhance 
transportation infrastructure safety/security 

Transportation, florida, 
floridas, facilities, 

condition 

Planning based on the physical condition of roads and other 
transportation facilities 
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Figure 3. Four-level taxonomy 

Level 0 

Level 1

Level 2
Level 3
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3.2.2.1 Disruption/Risk 
Two types of disruption/risk were identified, i.e., natural and man-made. Natural and man-made 
disruptions/risks negatively impact transportation infrastructure. Natural disruptions/risks are 
associated with natural phenomena that may derail transportation (e.g., road closure) and cause 
structural damage. In contrast, man-made disruptions/risks are human-induced events with similar 
consequences (City of Largo 2010). Six major types of natural disruptions/risks that might have 
significant impacts on transportation infrastructure were identified, including drought/heatwave, 
rising sea level/flooding, wildfire, landslide, earthquake, and cold winter weather. Three major 
man-made disruptions/risks: crash, terrorism, and cyber-attack were also identified to have 
significant impacts on future-proofed transportation infrastructure planning. 

3.2.2.1.1 Natural Disruptions/risks 
Drought/Heatwave:  
Drought is an insidious natural hazard that may cause tremendous loss to agriculture, ecosystems, 
and other sectors. A heatwave is a period of excessively hot weather, which may be accompanied 
by high humidity. The excessive heat experienced during drought/ heatwave can cause the 
pavement to soften and expand. This can create rutting and potholes, particularly in high-traffic 
areas, and can place stress on bridge joints. Drought/heatwave can also limit construction activities 
or increase the cost of construction activities, particularly in areas with high humidity.  

Rising sea level/Flooding:  
Global warming is causing the sea level to rise. The added water from melting ice sheets and 
glaciers and the expansion of seawater as it warms are two major causes of sea level rise. Flooding 
may occur as an overflow of water from a river, lake, or ocean overtops or breaks levees, resulting 
in some water escaping its usual boundaries. Flooding could also occur due to an accumulation of 
rainwater on saturated ground. Rising sea level/flooding can flood low-lying communities, 
resulting in downtime for transportation systems. Transportation infrastructures such as roads, 
railroads, and tunnels are highly vulnerable to flooding risks, especially on shorelines. 

Wildfire:  
A wildfire is an unplanned, uncontrolled, and unpredictable fire. Due to climate change, wildfires 
are getting more intense and frequent. Wildfires in close proximity can result in structural damage 
to transportation infrastructure. Wildfire, same as drought/heatwave, softens and deteriorates 
pavements.  

Landslides:  
A landslide is defined as the down-slope movement of a mass of rock, debris, or earth down a 
slope. Landslides could be activated by other types of natural disasters such as heavy rains, 
droughts, and earthquakes. Landslides result in road closing due to structural damage to pavements 
or mass of debris piled up, impeding regular traffic flow and emergency rescue.  

Earthquake:  
An earthquake is a violent and abrupt shaking of the surface of the Earth. Earthquake leads to 
structural failure in highway/roadway/bridge. More specifically, masonry and frame structures can 
be destroyed by the sudden release of energy. Failure or crack can be attributed to liquefaction, 



  

  www.tidc-utc.org 21 | P a g e  
  

landslide, fault rupture, and failure of subgrade and subbase. Depending on the extent of the 
earthquake and the soil they were built on, bridges can also be susceptible to significant structural 
damage.  

Cold winter weather: 
The winter season brings a variety of adverse weather extremes. One may experience heavy snow, 
ice accumulation, freezing temperatures, and wind chill. Different natural events occur during 
winters, such as winter storms, blizzards, and many more. Snow and ice reduce pavement friction 
and vehicle maneuverability, causing slower speeds, reduced roadway capacity, and increased 
crash risk. They also increase road maintenance costs. Snow and ice accumulations and wind-
blown debris can also obstruct roads resulting in traffic delays and road closures. Moreover, cold 
weather also creates an issue with the pavement condition. For example, cold weather can 
cause asphalt to contract, resulting in cracks. This weakens the asphalt significantly and reduces 
the life expectancy of the surface. 

3.2.2.1.2 Man-made disruptions/risks 
Crash: 
A crash can be defined as a collision involving a device designed primarily for conveying persons 
or goods from one place to another. Reducing crashes can save lives. The number of crashes as 
well as the underlying reasons for crashes, should be considered to select, fund, and build/modify 
transportation infrastructures so that the number of crashes can be reduced.    

Terrorism:  
Terrorism encompasses a range of complex threats: organized terrorism in conflict zones, foreign 
terrorist fighters, radicalized “lone wolves”, and attacks using chemical, biological, radiological, 
nuclear and explosive materials to cause harm to both human lives and critical infrastructures. 
Terrorism threats could lead to significant damage to transportation infrastructures (e.g., the 
collapse of bridges). Hence, it is crucial to identify vulnerable transportation infrastructures, 
potential impact if attacked, steps to take in order to prevent the attack, and steps to be taken if it 
is attacked.  

Cyber-attack: 
A cyber-attack is a malicious and deliberate attempt to breach the information in computer 
systems, technology-dependent enterprises, and networks. Cyber-attacks could disrupt, disable, or 
destroy functioning systems by using malicious codes to alter existing codes, logic, or data. Analog 
controls in different transportation infrastructure entities are being replaced by networked digital 
counterparts, allowing remote monitoring and control of signs, signals, bridges, tunnels, and 
vehicles. Due to such a level of computerization, cyber-attacks have become highly probable. 
Cyber-attacks can lead to crashes as well as disruption in day-to-day operations of various 
transportation infrastructures (e.g., closing of bridges) due to issues such as hacking of message 
signs and traffic controllers.  

3.2.2.2 Utilization 
Utilization refers to the usage of transportation infrastructure in terms of vehicle type and traffic 
volume. Vehicle type refers to the different types of vehicles based on their various characteristics, 
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such as energy sources (e.g., conventional gasoline or diesel vehicles, electric vehicles) (Portland 
Bureau of Planning and Sustainability 2018). Traffic volume refers to the number of vehicles that 
use transportation infrastructure. Accurate prediction of the future vehicle types and volume can 
help to better understand the load experienced by roads and bridges both at the structural (e.g., 
stresses and strains in pavements) and system level (e.g., level of congestion), which can be used 
for accurate infrastructure capacity estimation and maintenance planning (Arun et al. 2013). Not 
considering it may result in inaccurate capacity estimation resulting in sub-optimal funding 
allocation and construction strategies. 

3.2.2.2.1 Vehicle Type  
Conventional fuel vehicle: 
Conventional fuel vehicle refers to conventional internal combustion engine (ICE) vehicles 
powered by gasoline or diesel fuel. These types of vehicles make up the majority market share in 
the U.S. In 2021, internal combustion engines (ICEs) amounted to just under 90% of the light 
vehicle sales by fuel type, including cars and light trucks (Statista 2021). By 2030, gasoline-
powered cars may still account for nearly 80% of the market (Statista 2021).  

Electric vehicle: 
Electric vehicles are vehicles that are either partially or fully powered on electric power instead of 
an internal-combustion engine. This type of vehicle is seen as a possible replacement for current-
generation automobiles to address rising pollution, global warming, depleting natural resources, 
and many more. The electric vehicle market in the United States has grown significantly in recent 
years. In 2020, the share of new electric vehicle sales was approximately 2.4%, an increase from 
about 2% in 2019 (Bui et al. 2021). 

3.2.2.2.2 Traffic Volume 
AADT/ADT: 
As a simple but valuable measure, annual average daily traffic (AADT) can be calculated by 
dividing the total volume of vehicle traffic on a highway or road for a year by 365 days (Rossi et 
al. 2012).  It informs how busy a road is. It is the most commonly used method to determine traffic 
flow. It helps to determine whether new road segments must be built, which design modifications 
should be made, etc.  

3.2.2.3 Performance 
Three important aspects of transportation infrastructure performance were identified: environment, 
service, and structural condition assessment. Environmental performance is related to the impacts 
of transportation infrastructure on pollution, waste, and emissions. Water quality, GHG emission 
level, and open space preservation are often used to measure how transportation infrastructure 
impacts the environment (Portland Bureau of Planning and Sustainability 2018).  Service 
performance refers to the capability of transportation infrastructure to ensure efficient and effective 
movement of people and goods. Four major service performance measures were identified: 
mobility, accessibility, connectivity, and supply chain and logistics reliability (Nevada Department 
of Transportation 2008; State of Alaska Transportation & Public Facilities 2016). Finally, it was 
identified that structural condition performance assessment is important for future-proofed 
transportation infrastructure planning. Structural condition performance assessment could be 
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conducted through visual inspection or automated monitoring system (Wisconsin Department of 
Transportation 2009). 

3.2.2.3.1 Environmental 
Emission level:   
Emission level refers to the quantitative amount of specific air pollutants released from 
transportation-related sources over particular timeframes (EPA 2018). Emission levels can be 
measured at both regional and national scales. The U.S. transportation sector — which includes 
cars, trucks, planes, trains, and boats, emits significant amounts of carbon annually. There has also 
been significant scientific evidence of carbon emission due to transportation construction projects. 
If this is not addressed, the earth’s temperature can significantly rise. Including emission levels 
into the transportation infrastructure planning framework can help track the emission level and 
determine the best mode of action with regards to the use of eco-friendly materials in construction, 
alternative fuel and transportation mode development, construction of eco-friendly infrastructures 
such as cycling and walking trails, better land use management to increase accessibility, and many 
more.  

Water quality:  
Water quality measures the condition of the water based on chemical, physical, biological, and 
radiological characteristics. Transportation affects water quality directly in various ways: 1) road 
construction and maintenance; 2) pollutants deposited such as vehicle exhaust, oil, dirt, and deicing 
chemicals; and 3) oil spills on inland waterways and coastal areas. While planning, the effect of 
the transportation sector on water quality should be closely considered. Appropriate actions (e.g., 
constructing higher quality pavements to reduce the rate of erosion and penetration by the 
pollutant, encouraging alternative fuel and transportation mode development) should be taken. 

Preservation of open space:  
Well-managed open space in a community protects the environment and could greatly enhance the 
quality of life of residents. Well-preserved open space provides places and opportunities for 
economic, social, and cultural activities, which is beneficial for the long-term development of a 
community. Transportation planning should consider the conservation of open space. If planning 
authority conducts their operation without consulting land and resource management agencies, it 
can have a significant negative impact, such as uncontrolled urban sprawl, shortage of 
groundwater, polluting stormwater runoff, and a decrease in air quality. 

3.2.2.3.2 Service 
Mobility:  
Mobility refers to the efficient movement of people or goods (Litman 2011). A mobility 
perspective focuses on increasing the motor vehicle system capacity and speed. Population 
increases and economic growth have increased the demand for mobility (e.g., an increase in vehicle 
miles of travel (VMT)). If mobility needs are not addressed, various problems such as congestion 
can be observed, leading to reduced economic activity in the area. Hence, to spur continued 
economic growth and foster quality of life, it is critical to build/modify transportation 
infrastructures that can accommodate future mobility needs.  
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Connectivity:  
Connectivity refers to the density of connections in path or road networks and the directness of 
links (Victoria transportation policy institute 2017). A well-connected network has many short 
links, numerous intersections, and minimal dead-ends. Less connectivity leads to more travel 
times, fewer trips, and ultimately loss of mobility. Poor connectivity also negatively affects freight 
movement.  

Accessibility:  
Accessibility refers to the ability to reach desired goods, services, activities, and destinations 
(collectively called opportunities) (Litman 2011). Access is the ultimate goal of most 
transportation. Higher accessibility leads to reduced travel times and oftentimes less use of 
personalized automobiles. More compact, mixed-use, walkable communities are critical if 
accessibility is to be improved in a particular region. 

Supply chain and logistics:   
Supply chain and logistics refer to the movement of products from the beginning of a supply chain 
to the customer’s handle. If the freight movement is in a good state, it results in a higher level of 
business activities. Considering it in planning is crucial as a business activity is essential for any 
region to thrive.  

3.2.2.3.3 Structural Condition Assessment 
Visual inspection:  
Visual inspection is a common method for the inspection and maintenance of civil infrastructure. 
Using raw human senses (e.g., vision and touch), professionals complete data acquisition and 
analysis tasks for infrastructure quality control. Accurate visual inspection can detect a variety of 
structural surface flaws, such as corrosion, contamination, surface finish, and surface 
discontinuities on joints in transportation infrastructures. Visual inspection results should be 
incorporated into planning to determine the required maintenance and funding needs.  

Automated monitoring systems:  
Automated monitoring refers to the use of tools and technologies (e.g., cameras) to determine 
structural flaws in transportation infrastructures such as pavements and bridges. Automated 
monitoring systems can detect defects that are not visible on the surface by humans. Like visual 
inspection, automated monitoring systems’ results should be incorporated into planning.  

3.2.2.4 Funding 
Funding refers to the financing mechanism to develop, maintain, or rehabilitate transportation 
infrastructure. Two dimensions pertaining to funding were observed to be important to 
transportation infrastructure: source and allocation. Source refers to the authorities and financial 
entities that provide money for transportation infrastructure-related ventures. Allocation refers to 
allocating the funds to different areas or activities for transportation enhancements. It was observed 
that there are different types of allocation strategies, such as need-based, equity-based, priority-
based, and community-based strategies. 
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3.2.2.4.1 Source 
Public:  
Public funding includes money from federal sources, usually allocated through US DOT, as well 
as from state and local authorities that come from various sources such as sales taxes and property 
taxes. Tracking previous public transportation funding and potential funding can help plan better 
for transportation infrastructure projects. If not done in due time, sub-optimal allocation of the 
public fund may occur, which may dilute the long-term strategic plans. 

Public-private:  
The public-private partnership (PPP) is a collaborative relationship and innovative funding model 
established between a public agency and a private entity to design, develop, finance, construct, 
operate or maintain public infrastructure projects. Fiscal constraints limit how much governments 
can do on their own. Agencies should incorporate new PPPs or the potential of upcoming PPPs in 
the near future so that they can undertake new infrastructure projects. Relying solely on public 
funding can reduce their flexibility in completing the required task, be it constructing, resurfacing, 
or restoring new or already built infrastructures. 

3.2.2.4.2 Allocation Strategies 
Need-based funding:  
Need-based funding is investment dictated by the needs of a region. This type of funding indicates 
transportation infrastructure deficiencies. This is the most critical type of funding allocation as it 
can be related to safety (incorporating countermeasures to reduce crashes), freight movement 
needs, etc. Not considering such type of strategy in planning may lead to investment allocation not 
reflective of the need in a region.  

Equity-based funding: 
Equity-based funding refers to the allocation of funding to regions depending on how much they 
contribute to revenue generation, the percentage of people living, usage of transportation 
infrastructure, etc. Equity-based funding ensures that each user/region is weighted equally. This 
type of funding allocation can be applied if the competing regions face similar needs, and selection 
among them is required due to funding constraints. Not considering it in planning can lead to 
uneven and unjustified funding distribution, which may create tension between local government 
officials. 

Priority-based funding:  
This is a special type of funding allocation strategy where a special fund is allocated to pay off 
previous expenses or invest in new projects that regional authorities have identified as crucial.  
Local jurisdictions can also submit their priority projects through a competitive process. Federal 
authority can also set a limit that a certain portion of funding must go to a particular region, such 
as rural areas. Priority-based funding should be considered in planning as it helps pay off debt 
accrued over the years and focuses on disadvantaged areas. Not considering it may lead to debt 
explosion and directed funding to specific, traditional areas. 
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Community-focused funding:  
Each community is different. Community value dictates the funding needed for transportation 
infrastructure. It can be in the form of the development of bicycle lanes, shorter/longer road widths, 
etc. This type of allocation strategy is needed when a community’s needs are significantly different 
from a region’s needs. If not addressed appropriately, people in the community can leave or put 
pressure on the local officials.  

3.2.2.5 Innovation 
Innovation can be defined as the implementation of a new idea, process, or service, to improve the 
efficiency and effectiveness of transportation infrastructure. Innovations, including new design 
concepts, travel modes, and technologies, have brought significant changes to today’s 
transportation infrastructure and are expected to bring more in the future. 

3.2.2.5.1 New Design Concepts 
Complete Streets:  
Complete streets are designed and operated to enable safe access for all users, including 
pedestrians, bicyclists, motorists, and transit riders of all ages and abilities (Smart Growth America 
2019). Complete streets improve safety by reducing crashes through safety improvements. By 
providing safe and efficient connections between different locations (e.g., residences, offices, retail 
stores, parks, schools), complete streets could promote the economic growth and stability of a 
community or region.    

Highway and safety corridors:  
Highway and transportation corridors refer to the designation and design of roadways that are 
beneficial to fulfilling an operational goal set by the authority. These corridors help alleviate the 
pressure of increased population that provide high connectivity and convenience for all users. 
Safety corridors can reduce the number of crashes by designating the roadway as a no-tolerance 
zone for traffic violations monitored by a higher presence of law enforcement officers.  

3.2.2.5.2 New Travel Mode 
Telecommuting:  
Telecommuting (working from home or a location close to home) is a travel mode that is getting 
increasingly popular, especially in the post-covid time. For transportation systems, the most 
promising outcome of telecommuting is the removal of cars from the road during peak travel 
periods. Telecommuting could reduce the AADT/ADT as fewer people travel on the streets. This 
change should be incorporated into the planning process to make required design/operational 
changes. 

Carpooling and vanpooling:  
A vanpool is a form of ridesharing in which a group of people (appx. 5-15 depending on the size 
of the van) share a ride to work for convenience, to save money, or be more environmentally 
friendly. Carpooling is similar with fewer people. Car and vanpooling can reduce congestion and 
travel time. Due to fewer cars on the road, carpooling and vanpooling can also significantly help 
reduce the emission level. 
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Bike sharing:  
Bike-sharing is a new transportation mode in which individuals can use shared bikes on a short-
term basis, usually for a price. Bike share and shared micro-mobility have rapidly emerged as new 
transportation options that can increase cycling and reduce automobile usage.  Bike sharing can 
increase the safety and livability of a region by reducing emissions. 

3.2.2.5.3 Process/New Technology 
Autonomous vehicle:  
Autonomous vehicles (AV) use technology to partially or fully replace human drivers. Currently, 
some vehicles are already being deployed with autonomous functionality, such as self-parking or 
auto-collision avoidance features (Bagloee et al. 2016). In the future, it is expected that a fully 
autonomous vehicle can drive itself independently without any human input. Infrastructure 
enhancements, such as dedicated lanes or roadways that maximize vehicle utility and reduce 
parking requirements, would be required to facilitate the adoption of AVs. If the effect of the 
incorporation of AVs in the transportation domain is not fully understood, many problems may 
arise, such as miscalculating the road capacity, inadequate road infrastructures to monitor AVs, a 
potential increase in congestion if people shift from transit to personal autonomous vehicles, etc.  

Connected vehicle:  
Connected vehicle technologies allow vehicles to communicate with each other and the world 
around them (ITS 2019). The connected vehicle concept is about supplying useful information to 
a driver or a vehicle to help the driver make safer or more informed decisions. The use of a 
“connected vehicle” doesn’t imply that the vehicle is making any choices for the driver. Rather, it 
supplies information to the driver, including potentially dangerous situations to avoid. Similar to 
autonomous vehicles, the introduction and adoption of connected vehicles will have significant 
requirements on the enhancement of transportation infrastructure.  

3.2.2.6 Public Perception 
Public perception, including societal trends and community values, represents the belief or opinion 
of the public towards future transportation (Atlanta Regional Commission 2011). Two types of 
societal trends, i.e., health conscious and environmentally conscious, and one type of community 
value, i.e., community’s transportation vision, were identified. 

3.2.2.6.1 Societal trend 
Health conscious:  
This relates to the societal trend of people especially the younger generations’ focus on a healthy 
lifestyle. Due to this, they prefer healthier transportation choices such as cycling or walking for 
both recreational and professional purposes. If the societal trend is health-centric, certain 
transportation infrastructures have to be built. For example, cycling advocates argue that dedicated 
infrastructure is required to increase the rate and safety of cycling, even as opponents assert that 
the cost is too high and the benefits limited — particularly if it means adjusting the urban space 
dedicated to cars. If this need is not properly addressed, the political pressure may pile up and lead 
to increased future costs for innovation/modification in transportation infrastructure design.  
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Environment conscious:  
A growing number of people have stronger biospheric and altruistic values, as opposed to egoistic. 
Those people are inclined to reduce their car use, since they strongly believe car use contributes to 
environmental problems. A conscious environmental view of a region may lead to infrastructure 
development such as bike-friendly infrastructure. Similar to the dimension discussed before, if this 
need is not adequately addressed, the political pressure may pile up and lead to increased future 
costs.  

3.2.2.6.2 Community Value 
Community’s transportation vision:  
Community values are the core principles or standards that the community’s citizens wish to 
maintain. They must be acknowledged, honored, and defended to ensure that infrastructure change 
and development in a community follow these core principles and standards. Community support 
can help agencies avoid costly delays in the environmental review and ecological permitting 
stages. Agencies also may generate greater goodwill, which can translate into increased financial 
support for transportation-related activities. Not considering it may result in community pressure 
on elected officials to halt an ongoing transportation project, modify an already built infrastructure, 
or even cancellation of a particular project. 
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Chapter 4: Inter-relationships Among Future-proofing Factors 
 

4.1 Association Rule Mining  
In order to determine the semantic relationship among different concepts generated via the topic 
models, the association rule learning method was applied (Chowdhury and Zhu forthcoming). 
Association rule mining is a procedure that aims to observe frequently occurring patterns or 
associations from datasets found in various kinds of databases, such as relational databases, 
transactional databases, and other forms of repositories (Manimaran and Velmurugan 2013). 
Association rules are created in ARM by thoroughly analyzing data and looking for frequent 
if/then patterns in large datasets to identify hidden knowledge (Ampornphan and Tongngam 2020). 
Due to its capability in identifying inter-relationships in complex text datasets, ARM has been 
used in many transportation domain problems such as discovering associations between pairs of 
timestamped alarms (e.g., warnings) in railway transportation systems using floating train data 
(FTD) (Sammouri et al. 2012), exploring relationships between risk variables (e.g., improper 
loading, poor navigation visibility) identified from inland waterborne transportation accident 
reports (Wang and Yin 2020), and exploring association rules among key influence factors (e.g., 
monthly freezing index, service age) for thermal cracking using the Long-Term Pavement 
Performance (LTPP) program database (Dong et al. 2018).  

 An association rule has two major parts, i.e., an antecedent (if) and a consequent (then). 
An antecedent is something that is fixed by the user, and a consequent is an item that is found in 
combination with the antecedent. In the context of the current analysis, an antecedent would be 
any concept shown in the taxonomy (e.g., societal trend), and consequents would be the concepts 
that are most closely associated with it (e.g., societal trend changes based on the new travel mode). 
Two quantitative measures (confidence and lift) are used to determine the significance of the 
degree of association. The first measure, called confidence, captures how often the antecedent 
appear in transactions that contain only the antecedent. Finally, lift refers to the increase in 
confidence in claiming that the antecedent will be present in a combination, given that the 
antecedent was present. 

 ARM intends to identify strong rules discovered in databases using some measures of 
interestingness. Formally, let 𝐼 = {𝐼 , . . . , 𝐼 } be a set of 𝑚 items, and a database D = {𝑡 , . . . , 
𝑡 }be a set of 𝑛 observations, where each observation is unique and has a subset of items in 𝐼. A 
rule in the ARM has the form “X→Y”, where  𝑋, 𝑌 ⊆ 𝐼 and  𝑋 ∩ 𝑌 ∅.  This means that every 
rule is composed of two sets of items 𝑋 and 𝑌, where 𝑋 is called the antecedent and 𝑌 is called the 
consequent. 

 Two common measures of interestingness, i.e., confidence and lift were adopted in this 
study to find interesting patterns in the data. Confidence is the conditional probability of the 
consequent occurring, given that the antecedent is true. It can be calculated as 

                                            𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 X →  Y → 
                                              (3) 

Where 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 X  is the proportion of observations in the database which contains item X, 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 X → Y  is the proportion of observations in the database, which contains both items 𝑋 
and 𝑌. Confidence value represents the certainty of a rule. A higher confidence value indicates a 
stronger association between topics.  
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The lift metric is defined as the probability of the co-occurrence of the antecedent and 
consequent divided by the probability of their co-occurrence if the occurrence of the two items are 
independent. It can be calculated as 

                                            𝐿𝑖𝑓𝑡 X →  Y → 

∗
                                               (4) 

 The lift value indicates the statistical dependence between X and Y. A lift value greater 
than 1 indicates a positive correlation, less than 1 indicates a negative correlation, and equal to 1 
indicates that the two items are independent. Figure 4 shows the conceptual illustration of ARM 
adopted in this study. 

 
Figure 4. Conceptual illustration of ARM 

4.2 Inter-relationship Identification 
Based on the developed taxonomy, association rule mining was applied to level-2 topics to identify 
their inter-relationships. Level-2 topics were selected for the ARM analysis in this study since they 
have the appropriate level of detail. Using level-3 topics in the taxonomy for analysis would 
significantly increase the computational complexity, while using level-1 topics may result in losing 
useful insights due to the high level of granularity. For ARM analysis, a dataset with 14 items (i.e., 
level-2 topics) and 253 observations was first created. The observations were coded with regard to 
each individual topic as well as pairs of topics. The number of occurrences of each individual topic 
indicates the frequency of that topic appearing in the database. The number of occurrences of each 
pair of topics indicates the frequency of a specific rule appearing in the database. For example, in 
a document titled “Moving Michigan Forward: 2040 State Long-Range Transportation Plan”, it 
was stated that “Integrating sidewalks, bicycle lanes, shared use pathways, or other infrastructure 
supporting pedestrians and bicyclists into road construction projects results in both efficiency and 
opportunities to improve safety for all users of the roadway” (Michigan Department of 
Transportation 2016). Based on this observation, one occurrence of a rule (i.e., a pair of level-2 
topics) was identified as “new design concept→man-made disruptions/risks”, as the observation 
indicates new design concept could reduce safety accidents in the future.  
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For each level-2 topic, association rules were created with regard to the rest of the 13 topics, 
resulting in a total of 102 rules in this study (Table 2). An R package for ARM was used to calculate 
the confidence and lift values for each rule (for code, see Appendix A4). For example, it was 
observed that a rule “New technology→man-made disruptions/risks” occurred 15 times among the 
253 observations. The topics of “new technology” and “man-made disruptions/risks” were 
identified in 68 observations and 40 observations, respectively. Hence, according to Eq. (3), the 
confidence level of the rule “New technology→man-made disruptions/risks” was (15/253) / 
(68/253) =22.06%. According to Eq. (4), the lift value was (15/253)/ ((68/253) *(40/253)) =1.395. 
This shows that man-made disruptions/risks and new technology occurred more frequently than 
expected. Table 24 in the Appendix (A2) shows all the identified rules in this study. 

4.2.1 Significant Inter-relationships 
In this study, significant inter-relationships among different planning factors were identified based 
on both confidence and lift values. Two criteria were used to assess a rule and determine whether 
it is significant: first, the confidence value of the rule should be above the upper quartile among 
all the rules in this study (i.e., 0.1730); second, the lift value should be above 1. Based on these 
two criteria, eight rules were identified as significant in this study. Table 3 and Figure 5 show the 
identified significant inter-relationships.  

Table 3. Significant association based on confidence and lift values 

Rules Confidence Lift 

Man-made disruption/risk and New technology 0.375 1.395 

Man-made disruption/risk and Community value 0.286 1.807 

Environmental performance and Societal trend 0.286 2.493 

Structural condition assessment and Traffic volume 0.273 3.136 

New technology and Traffic volume 0.381 1.417 

New technology and Vehicle type 0.364 1.353 

New technology and Societal trend 0.286 1.063 

New technology and Environmental performance 0.276 1.027 
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Figure 5. Significant associations identified among transportation planning factors 

4.2.1.1 Association with Man-made Disruptions/risks  
Two associations related to man-made disruptions/risks were found to be significant. First, there 
is a high degree of inter-dependency between new technologies and man-made disruptions/risks. 
New technologies such as automated and connected vehicles have the potential to reduce crashes 
due to various safety features of the vehicles (Rahman et al. 2019). Researchers estimated that 
these new features could reduce traffic fatalities by up to 94% by eliminating human error-induced 
traffic accidents (Maddox 2018). On the other hand, these new technologies increase security and 
privacy concerns due to the large volume of information being accessed and shared. A report from 
the European Union Agency for Cybersecurity (ENISA) pointed out that autonomous vehicles are 
highly vulnerable to a wide range of attacks, such as sensor attacks with beams of light, 
overwhelming object detection systems, and back-end malicious activity (ENISA 2021). 
Community value is another factor that was observed to be strongly associated with man-made 
disruptions/risks. Residents in local communities, as the ultimate users of transportation 
infrastructure, can help enhance transportation safety by directly participating or indirectly 
influencing transportation infrastructure planning and design. For example, The Seattle 
Department of Transportation (SDOT) has taken a city-resident partnership approach to ensure 
that both sides come to a common understanding of local transportation needs and challenges and 
make planning and design decisions accordingly (Seattle Department of Transportation 2017). 
They found that community-oriented solutions could lead to effective measures that reduce man-
made disruptions and risks in transportation. Such measures may include displaying more signage, 
implementing traffic calming measures, new parking management, and driver awareness 
campaigns. Knowing these strong inter-relationships, transportation planning agencies should 
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carefully examine the potential impacts of new and innovative technologies and actively 
incorporate community values into consideration in order to reduce the risks associated with man-
made disruptions.    

4.2.1.2 Association with Environmental Performance 
Environmental performance and societal trend were found to be highly associated. There is a 
growing level of environmental consciousness in society. In a recent study, it was observed that 
more and more people believe that protecting the environment and dealing with global climate 
change should be two of the top priorities in the U.S. (Tyson and Kennedy 2020). This trend has 
a significant impact on transportation systems and their environmental performance. For instance, 
a growing number of people, especially the younger generation, call for a more environmentally 
friendly transportation system that promotes healthy living (Connecticut Department of 
Transportation 2015). People contribute to reduced carbon footprint by adopting more sustainable 
travel behaviors such as taking mass transit, switching to electric vehicles,  and using shared 
mobility services (Wang and Wang 2021). The public is also calling for preserving open/green 
space and minimizing the urban sprawl to protect the environment (Gearin and Kahle 2006). 
Acknowledging this association between societal trend and environmental performance of 
transportation, transportation infrastructure planners should better capture the emerging social 
trends, and leverage the power of social trends to drive the development and design of 
environment-friendly transportation infrastructure (Fry 2020). 

4.2.1.3 Association with Structural Condition Assessment 
The inter-relationship between traffic volume and structural condition assessment techniques was 
observed to be significant. It was found that traffic volume would affect the selection of structural 
condition assessment tools and methods. For roads and bridges with light traffic, traditional visual 
inspection techniques might be adequate. However, for heavily used roads and bridges that play 
an important role in the overall transportation system efficiency, automated monitoring and 
assessment systems that provide a more accurate and faster evaluation of infrastructure conditions 
are preferred. The continuous health monitoring of infrastructure could facilitate informed 
maintenance and rehabilitation decisions and thus minimize the potential consequences of 
improper or delayed actions, such as sustained lane closure due to large-scale maintenance (Grosso 
et al. 2020). Therefore, transportation planners could use traffic volume as a criterion to prioritize 
the adoption of automated structure condition monitoring and assessment. This can lead to less 
maintenance cost in the long term as well as less loss of service in the transportation network.  

4.2.1.4 Association with New Technology 
New technology was found to be closely associated with four other topics: vehicle type, traffic 
volume, societal trend, and environmental performance. First, vehicle type will change with the 
advancement of new technologies. More electric and autonomous vehicles will be seen on the 
road. It is estimated that about 15% of the fleet in the U.S. will become autonomous by 2030, and 
about 50% of the light-duty vehicles sold in the U.S. will be electric by 2035 (Rissman 2017). 
Second, technologies such as AV would drastically change the traffic condition. It could smooth 
traffic flows and reduce congestion by better guiding and coordinating vehicles on the roads. At 
the same time, it might increase vehicle miles traveled (VMT) resulting from migration effects 
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from other travel modes to private AVs (Soteropoulos et al. 2019). Third, technologies will bring 
or reinforce emerging societal trends. For example, self-driving and mobile computing will enable 
people to change their lifestyles, such as sharing vehicles instead of owning vehicles. The societal 
trends will, in turn, push the development of technologies. Finally, technologies (e.g., electric and 
automated vehicles) will help improve environmental performance in multiple ways, including 
using renewable energy sources and reducing GHG emissions. As new technologies are associated 
with so many aspects of future transportation, it is critical for planning agencies to understand the 
technological landscape and thoroughly incorporate the implications on traffic, society, and the 
environment into infrastructure design and management to meet future needs.  
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Chapter 5: Modeling the Effects of Future-proofed Factors and 
Associations  
After the future-proofed transportation planning factors and their associations are identified, 
numerical models can be developed to incorporate them into risk-informed decision-making. In 
this study, based on the identified critical influence of electric vehicles as an example of new 
technology and vehicle type, the potential effects of electric vehicles (EV) on (1) pavement 
conditions and (2) environmental performance in the future were modeled in two case studies.  

5.1 Effects of EV on Pavement Condition 
Due to the massive battery, EVs weigh more than their internal combustion engine counterparts. 
Because of this larger weight, it could potentially cause more wear and tear to the pavements. To 
determine whether EV would have significant impact on pavement condition, Present 
Serviceability Rating (PSR) was used. PSR is a surface-condition rating scheme developed by the 
American Association of State Highway Officials (AASHO), which is based on a numeric scale 
between 0 and 5 (FHWA 2021). The value of 0 indicates extremely poor condition, whereas 5 
indicates a theoretical distress-free pavement. The value of 4.5 is considered the highest practical 
PSR based on existing literature (Batouli et al. 2022). Pavement deterioration was quantified by 
using an empirical formulation for highway performance monitoring system (HPMS) suggested 
by Lee et al. (1993). This equation can be stated as follows. 

𝑃𝑆𝑅 𝑃𝑆𝑅 𝐴. 𝐹 ∗ 𝑎 ∗ 𝑆𝑁 ∗ 𝐴𝑔𝑒 ∗ 𝐶𝐸𝑆𝐴𝐿                                                                               (5) 

Where 𝑃𝑆𝑅  denotes the initial value of PSR for a given road section right after construction or 
after a major rehabilitation, 

𝐶𝐸𝑆𝐴𝐿 (Cumulative Equivalent Single Axle load) captures the impact of traffic load, 

𝐴𝑔𝑒 denotes the lifetime of the road since construction, 

𝐴. 𝐹 is an adjustment factor that is used to customize the prediction of PSR based on the effects 
of climate conditions, 

𝑆𝑁 (structural number) reflects the structural conditions of roads (i.e., the type of material and 
depth of surface, base, and subbase layers), 

and 𝑎, 𝑏, 𝑐, and 𝑑 are coefficients whose values depend on the type of pavement. 

5.1.1 Case Description 
Five road sections with varying lengths and types in Connecticut were identified (Connecticut 
Department of Transportation 2022). These road sections were located across different towns in 
Connecticut, including East Haddam, Old Lyme, East Haven, Bridgeport, and Killingly. Among 
these road sections, two of them are of composite types, whereas three are flexible types. With 
regard to the functional class type, three of them are interstates, one is minor arterial, and the final 
one is other principal arterial. The values of 𝑎, 𝑏, 𝑐, and 𝑑 coefficients are based on the type of 
pavements. These values were collected from the study done by Lee et al. (1993). Table 4 shows 
the value of the coefficients and the summary statistics of different predictive models for five 
major pavement types. In the Table, FLEX refers to the flexible pavement-based regression model 
and COMP refers to the composite pavement-based regression model. The coefficient values from 
only these two predictive models were collected.  
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Table 4. PSR coefficients identified from Lee et al. (1993) 

 

 As the A.F value is based on the climate conditions and road section functional class, the 
climate zone of Connecticut was also identified. It was found that Connecticut falls in the wet-
freeze long-term pavement performance (LTPP) climate zone; hence, the adjustment factors (A.F) 
for the considered road sections need to be collected accordingly (Figure 6). Lee et al. (1993) 
provided two estimates for the A.F. The first set of estimates was obtained using the statistical 
package SAS (Table 5). The second set of estimates provided the recommended mean adjustment 
factors for use as defaults in the HPMS analytical process (Table 6). For the flexible and composite 
pavement types, both the A.F. estimates were observed to be similar. For example, the A.F value 
for a flexible pavement in other principal arterial was found to be 0.59 in both Tables 4 and 5. The  
𝑃𝑆𝑅  value was assumed to be 4.5 for all road segments based on different existing studies 
(Chootinan et al. 2006;  Lee et al. 1993). Other values, such as the age of the road and AADT, 
were collected from different state and local transportation agencies (e.g., Connecticut Department 
of Transportation (2022)). Table 7 summarizes these parameters for the five road sections.  
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Figure 6. Long-term Pavement Performance (LTPP) climate zone of Connecticut (Coffey et 
al. 2018) 

Table 5. Mean adjustment factors directly generated from SAS program in Lee et al. (1993) 
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Table 6. Recommended mean adjustment factors for different pavement groups in Lee et 
al. (1993) 

 

Table 7. Road section characteristics 

Parameters Road sections 
A B C D E 

Pavement type Composite Composite Flexible Flexible Flexible 
Functional class Interstate 

 
Interstate 

 
Interstate 

 
Other 

principal 
Arterial 

Minor 
Arterial 

AADT (2020) 129100 61900 23000  27500 4068 
Age (years) 13 4 4 13 20 

A.F 1.04 1.04 0.59 0.59 0.81 
a 0.381505 0.381505 14.28894 14.28894 14.28894 
b -0.1458 -0.1458 -1.8720 -1.8720 -1.8720 
c 0.5732 0.5732 0.3499 0.3499 0.3499
d 0.1431 0.1431 0.3385 0.3385 0.3385 

SN 8.21 8.21 4.61 4.61 4.61 
𝑷𝑺𝑹𝒊 4.5 4.5 4.5 4.5 4.5 

 

5.1.2 AADT Projection 
Traditionally PSR has been estimated using conventional fuel vehicles (CV). One key 
phenomenon that has not been investigated is the effect of EVs on pavements. EVs are expected 



  

  www.tidc-utc.org 39 | P a g e  
  

to increase their market share, resulting in higher EV AADTs on the road. The Electric Power 
Research Institute (EPRI) developed a series of three market penetration scenarios (i.e., low, 
medium, and high) based on actual EV sales through 2016. These scenarios were informed by 
various sources, such as the National Research Council of the National Academies of Science, 
Engineering, and Medicine (National Research Council 2013) and the National Renewable Energy 
Laboratory (Mai et al. 2018). Figure 7(a) and 7(b)  illustrate the low, medium, and high EV market 
penetration scenarios as new annual sales and total EV fleet size (i.e., cumulative vehicles in 
service), respectively. Using the dotted line in Figure 7(b), the low, medium, and high EV fleet 
projection scenarios were estimated. EV fleet size projection can be referred to as EV adoption as 
both indicate the people’s acceptance level towards driving EVs. The low scenario illustrates the 
pessimistic case with the lowest EV adoption, and the high scenario depicts the optimistic case. 
The medium scenario demonstrates the most likely case. Table 8 shows these three potential EV 
adoption scenarios that may occur in the future.  

 

Figure 7. Electric Power Research Institute (EPRI) low, medium, and high EV market 
penetration scenarios, shown both as (a) annual sales and (b) total EV fleet (US Drive 2019) 

 

Table 8. EV adoption scenarios 

Year Scenario
Low Medium High 

2025 0.75% 4.0% 8.0% 
2030 1.0% 5.0% 15.0%
2035 1.5% 10.0% 22.0%
2040 2% 14.0% 39.0%
2045 2.5% 20.0% 45.0%
2050 3.0% 27.0% 52.0%
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Based on the adoption scenarios shown in Table 8, EV AADT could be projected for 
different road sections. Table 7 identified the overall AADT values of the five road segments (i.e., 
A, B, C, D, and E) in 2020. Using a yearly growth factor of 0.8375%, first, overall AADT values 
of these roads were projected till 2050 using the equation 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑦𝑒𝑎𝑟 𝐴𝐴𝐷𝑇 1 0.8375% . 
Table 8 shows the projected AADT for the five road sections from 2020 to 2050 with five years 
increment. The growth factor value was approximated based on existing studies conducted across 
different road segments in Connecticut (Milone & Macbroom 2011; Fuss & O’Neill 2020). Using 
the EV adoption scenarios in Table 8, the projected overall AADT values (Table 9) were divided 
into CV and EV AADTs. For example, in 2030, assuming high adoption scenario, approximately 
21,049 EVs and 119,280 CVs would be operating daily on average on road A, respectively, 
resulting in a total AADT of 140,328 vehicles. Tables 10, 11, and 12 demonstrate the EV and CV 
AADT under low, medium, and high EV adoption scenarios, respectively. Results show that with 
the increase in EV adoption, the total number of EVs increases on the roads significantly. 
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Table 9. Projected AADT till 2050 

Year  
 
 
 
 

AADT  

Road sections 

A B C D E 
2020 129,100 61,900 23,000 27,500 4,068
2025 134,597 64,535 23,979 28,671 4,241 

2030 140,328 67,283 25,000 29,891 4,421
2035 146,304 70,149 26,065 31,164 4,610
2040 152,534 73,136 27,174 32,491 4,806
2045 159,029 76,250 28,332 33,875 5,011
2050 165,801 79,497 29,538 35,317 5,224 

 
 
Table 10. EV and CV AADT under low EV adoption scenario 

Year                 
 
 
 
 
AADT 

Road sections 
A B C D E 

EV CV EV CV EV CV EV CV EV CV 
2025 1,009 133,588 484 64,052 180 23,800 215 28,456 32 4,209
2030 1,403 138,926 673 66,611 250 24,750 299 29,593 44 4,378
2035 2,195 144,110 1,052 69,097 391 25,674 467 30,697 69 4,541
2040 3,051 149,484 1,463 71,673 543 26,631 650 31,842 96 4,710
2045 3,976 155,054 1,906 74,344 708 27,624 847 33,029 125 4,886
2050 4,974 160,827 2,385 77,112 886 28,652 1,060 34,258 157 5,068
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Table 11. EV and CV AADT under medium EV adoption scenario 

Year  
 
 
 
 

AADT    

Road sections 
A B C D E 

EV CV EV CV EV CV EV CV EV CV 
2025 5,384 129,213 2,581 61,954 959 23,020 1,147 27,524 170 4,072
2030 7,016 133,312 3,364 63,920 1,250 23,750 1,495 28,397 221 4,201
2035 14,630 131,674 7,015 63,134 2,607 23,459 3,116 28,048 461 4,149
2040 21,355 131,180 10,239 62,897 3,804 23,370 4,549 27,943 673 4,134
2045 31,806 127,224 15,250 61,000 5,666 22,666 6,775 27,100 1,002 4,009
2050 44,766 121,035 21,464 58,033 7,975 21,563 9,536 25,782 1,411 3,814

 

 

Table 12. EV and CV AADT under high EV adoption scenario 

Year  
 
 
 
 
AADT 

Roads 
        A B C D E 

EV CV EV CV EV CV EV CV EV CV 
2025 10,768 123,830 5,163 59,373 1,918 22,061 2,294 26,377 339 3,902
2030 21,049 119,280 10,093 57,191 3,750 21,250 4,484 25,408 663 3,759
2035 32,187 114,117 15,433 54,716 5,734 20,331 6,856 24,309 1,014 3,596
2040 59,488 93,046 28,523 44,613 10,598 16,577 12,672 19,820 1,875 2,932
2045 71,563 87,466 34,313 41,938 12,749 15,583 15,244 18,631 2,255 2,756
2050 86,217 79,585 41,339 38,159 15,360 14,179 18,365 16,953 2,717 2,508
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5.1.3 CESAL and PSR Estimation 
The concept of an equivalent single-axle load (ESAL) is typically used to measure the 

effects of axle loads on the pavement (Hajek 1995). By convention, an 18,000-pound single axle 
is considered 1.00 ESAL. Essentially, the ESAL values for other axles express their effect on 
pavement wear relative to 1.00 ESAL. CESAL refers to cumulative ESAL estimation based on 
different types of vehicles operating on a pavement. Different truck categories are defined in terms 
of standard ESAL loadings due to their load being comparable to 1.00 ESAL value. Other types 
of automobiles are not considered as they do negligible damage to the pavement structure due to 
lower weights. The CESAL value can be estimated using the following equation 

𝐶𝐸𝑆𝐴𝐿
∈ , ∈

 
∑ 𝐴𝐴𝐷𝑇∈ ∗ ∑ 𝑃∈ ∗ ∑ 𝐿∈

100
               ∀𝑡 ∈ 𝑇                                             6  

Where 𝐾  𝑇𝑦𝑝𝑒 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒: 𝐶𝑉, 𝐸𝑉 ,  

𝐼  𝑇𝑟𝑢𝑐𝑘 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠: 2, 3, 4, 5, 6 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑎𝑥𝑙𝑒𝑠 , 

 𝑇  𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠: 2025, 2030, 2035, 2040, 2045, 2050 , 

 𝐴𝐴𝐷𝑇  𝐴𝐴𝐷𝑇 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 𝑘 ∈ 𝐾 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑦𝑒𝑎𝑟 𝑡 ∈ 𝑇,  

𝑃 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐴𝐴𝐷𝑇 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑖 ∈ 𝐼, and  

𝐿 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡𝑟𝑢𝑐𝑘 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑖 ∈ 𝐼.  

Five categories of trucks were identified that could have a significant impact on the 
pavements. These trucks had different axles and were classified into seven classes (i.e., 5, 6, 7, 8, 
9, 10, 11, 12, and 13) based on their weights (Figure 8). Class 5, 6, 7, and 8 truck weights could 
range from  16001-19500 lbs, 19,501-26,000 lbs, 26,001-33,000 lbs, and 33,001 lbs- and up, 
respectively (US Department of Energy 2022). Each truck class has its respective number of axles. 
Weights for the 2, 3, and 4 axle trucks were assumed to fall between these ranges of class 5, 6, 7, 
and 8 vehicles. For example, the weight of all 3-axle trucks running with conventional fuels was 
assumed to be 23,000 lbs (Table 13). 

Weight range data for truck classes 9, 10, 11, 12, and 13 could not be directly found in the 
existing literature. A typical 5-axle semi-truck that belongs to truck class 9 was found to weigh 
35,650 lbs and was used as the weight of all 5-axle trucks running with conventional fuels (Big 
Truck Guide 2020). The weight for 6 or more axle trucks (i.e., class 10, 12, 13) running with 
conventional fuels was assumed to be 40,650 lbs. The load factors (i.e., 𝐿 ) for these conventional 
fuel trucks (CFTs) were also collected from existing literature (Alaska Department of 
Transportation 2020). Load factor refers to the average number of ESALs associated with each 
truck of a truck size category. It was observed that higher CFT weights resulted in higher load 
factors (Table 13).  
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         Figure 8. Federal Highway Administration (FHWA) vehicle classification (Refai et al. 
2014) 

To estimate the equivalent electric truck (ET) weights, it is important to determine the 
number of axles. Harvey et al. (2020) identified three ET types: short-haul (with a range less than 
150 miles), medium-duty (with a range between 150 and 300 miles), and long-haul trucks (with a 
range exceeding 300 miles). Short-haul trucks were assumed to consist of a tractor with one 
steering single axle and one single axle (in total 2 axles). Medium-duty trucks were assumed to 
have a steering single axle and a back axle. It was assumed that 25 percent of the back axles were 
singles and 75 percent were tandems (in total either 2 axles or 3 axles). Long-haul trucks were 
assumed to consist of a tractor with one steering single axle and one tandem axle on the tractor (in 
total 3 axles). Based on this, all the 2-axle ETs in this study were assumed to be medium-duty 
trucks, whereas all the 3-axle ETs were assumed to be heavy-duty trucks. Harvey et al. (2020) also 
estimated that in 2030, the medium-duty 2-axle ET weights would be approximately 1,440 lbs 
higher than comparative CFT weights. Long-haul 3-axle ETs would be 5,328 lbs heavier than 
comparative CFTs. Data concerning 4, 5, and 6 or more axle ETs were not found from the existing 
literature as ETs are relatively new in the market. It was assumed that  4, 5, and 6 or more axle ET 
weights would be at the minimum 5,328 lbs higher than their counterparts (Table 13). For example, 
the 4-axle CFT weight was 30,000 lbs. The 4-axle ET weight was assumed to 35,328 lbs. ET load 
factor was estimated based on the following equation. 
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               𝐸𝑇 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟
𝐶𝐹𝑇 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝐸𝑇 𝑤𝑒𝑖𝑔ℎ𝑡

𝐶𝐹𝑇 𝑤𝑒𝑖𝑔ℎ𝑡
                                                            7  

For different classes, the equivalent vehicle percentage (𝑃 ) was estimated using Table 14 
and inserted into Table 13. For example, 2.34% of the vehicles were observed to belong to truck 
class 5 (i.e., 2-axle). However, concerning 4-axle, 5-axle, and 6 or more axle truck categories, 
multiple truck classes belong to each of them. In such cases, the percentages of vehicles in several 
classes were added together. For example, truck classes 7 and 8 belong to the 4-axle truck category. 
The percentages of class 7 and 8 class trucks on the road were 0.0875% and 1.325%, respectively. 
Hence, the 𝑃  for 4-axle trucks was estimated to be 0.0875%+1.325%=1.41%. 

Table 13. Summary of truck categories for CESAL estimation 

Truck 
categories 

Federal 
Highway 

Administration 
(FHWA) truck 
classification 

% of 
AADT 

(𝑷𝒊) 

CFT weight 
(lbs) 

CFT 
load 

factor 
𝑳𝒊  

ET 
weight 
(lbs) 

ET 
load 

factor 
𝑳𝒊  

2-axle 5 2.34 18,000 0.5 19,440 0.54 

3-axle 6 0.68 23,000 0.85 28,328 1.05
4-axle 7, 8 1.41 30,000 1.2 35,328 1.41
5-axle 9, 11 5.45 35,650 1.55 40,978 1.78

6 or more axle 10, 12, 13 0.675 40,650 2.24 45,978 2.53
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Table 14. Vehicle percentage chart for different truck classes (Hallenbeck et al. 1997) 

Class Vehicle (%) 

1 0.125 

2 72.21 

3 16.85 

4 0.275 

5 2.34 

6 0.68 

7 0.0875 

8 1.325 

9 5.125 

10 0.2625 

11 0.325 

12 0.125 

13 0.2875 

 

 Tables 10, 11, 12, 13, and 14 were used together to estimate the CESAL values for both 
CFT and ET+CFT mix. Tables 15, 16, and 17 demonstrate the CESAL values estimated using 
Eqn. (6) for both CFT only and ET+CFT mix under low, medium, and high EV adoption scenarios. 
Results show that the  

 ESAL value was highest for road section A, followed by B, D, C, and E. This is due to the 
fact that road section A had the highest AADT whereas E had the lowest AADT.  

 Road sections with lower AADTs also had lower variation in CESAL under different EV 
adoption scenarios.  

 Primarily road sections A and B demonstrated a noticeable impact in CESAL with changes 
in EV adoption scenarios.  

 In general, the CESAL change is not significant when EV adoption is low. However, it 
becomes more significant when the EV adoption rate is higher in later years.
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Table 15. CESAL (millions) for CFT and ET+CFT mix in the low adoption scenario  

Year  
 
 
 
 
 
 
CESAL 
(millions) 

Road sections 

A B C D E 

ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT
2025 6.5902 6.5829 3.1598 3.1563 1.1741 1.1728 1.4038 1.4022 0.2077 0.2074 

2030 6.8734 6.8632 3.2956 3.2907 1.2245 1.2227 1.4641 1.4620 0.2166 0.2163 

2035 7.1714 7.1555 3.4385 3.4309 1.2776 1.2748 1.5276 1.5242 0.2260 0.2255 

2040 7.4823 7.4602 3.5876 3.5770 1.3330 1.3291 1.5938 1.5891 0.2358 0.2351 

2045 7.8067 7.7778 3.7431 3.7293 1.3908 1.3857 1.6629 1.6568 0.2460 0.2451 

2050 8.1452 8.1090 3.9054 3.8881 1.4511 1.4447 1.7350 1.7273 0.2567 0.2555 

 

Table 16. CESAL (millions) for CFT and ET+CFT mix in the medium adoption scenario  

Year  
 
 
 
 
 

 
CESAL 

(millions) 

Road sections 

A B C D E 

ET+ CFT CFT ET+ CFT CFT ET+ CFT CFT ET+ CFT CFT ET+CFT CFT 

2025 6.6220 6.5829 3.1751 3.1563 1.1798 1.1728 1.4106 1.4022 0.2087 0.2074
2030 6.9142 6.8632 3.3152 3.2907 1.2318 1.2227 1.4728 1.4620 0.2179 0.2163

2035 7.2617 7.1555 3.4818 3.4309 1.2937 1.2748 1.5468 1.5242 0.2288 0.2255

2040 7.6152 7.4602 3.6513 3.5770 1.3567 1.3291 1.6221 1.5891 0.2400 0.2351

2045 8.0087 7.7778 3.8400 3.7293 1.4268 1.3857 1.7060 1.6568 0.2524 0.2451

2050 8.4340 8.1090 4.0439 3.8881 1.5026 1.4447 1.7966 1.7273 0.2658 0.2555
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Table 17. CESAL (millions) for CFT and ET+CFT mix in the high adoption scenario  

Year  Road sections 

A B C D E 
 
 
 
 

CESAL 
(millions) 

ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT 

2025 6.6611 6.5829 3.1938 3.1563 1.1867 1.1728 1.4189 1.4022 0.2099 0.2074 

2030 7.0160 6.8632 3.3640 3.2907 1.2499 1.2227 1.4945 1.4620 0.2211 0.2163 

2035 7.3891 7.1555 3.5429 3.4309 1.3164 1.2748 1.5740 1.5242 0.2328 0.2255 

2040 7.8920 7.4602 3.7840 3.5770 1.4060 1.3291 1.6811 1.5891 0.2487 0.2351 

2045 8.2973 7.7778 3.9783 3.7293 1.4782 1.3857 1.7674 1.6568 0.2615 0.2451 

2050 8.7349 8.1090 4.1881 3.8881 1.5562 1.4447 1.8606 1.7273 0.2752 0.2555 
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 The CESAL values obtained from Tables 15, 16, and 17 were later used together with 
Table 7 to predict the PSR values for the five road sections under different EV adoption scenarios 
using Eqn. (5). It must be noted that the calculations of PSR values here were just for investigating 
the impacts of EVs on pavement conditions. No maintenance activities for roads were considered.  

Results show that, in general, electric trucks do not bring discernible differences in 
expected pavement performance (i.e., PSR) under any of the three adoption scenarios (Tables 18, 
19, and 20). The highest difference was observed in road section A, which has a significantly 
higher AADT than other road sections. To further compare how the PSR for different road sections 
in the six time periods varied with different EV adoption scenarios, the following equation was 
developed. 

      𝑃𝑆𝑅 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒
𝑃𝑆𝑅 𝐶𝐹𝑇 𝑃𝑆𝑅 𝐶𝐹𝑇 𝐸𝑇

𝑃𝑆𝑅 𝐶𝐹𝑇
∗ 100%                                         8  

 Table 21 lists the PSR decrease for different road sections in the six time periods. Figure 9 
illustrates the average percentage decrease across the six time periods. For example, on average, 
across the six time periods, PSR for road A with ET+CFT mix decreased by almost 0.0753%, 
0.5892%, and 1.2717% with low, medium, and high EV adoption scenarios, respectively, 
compared to CFT vehicle only.  

 Key takeaways for the stakeholders from these results: 

 In general, the additional weight of EV does not seem to bring a significant impact on 
pavement conditions directly. 

 Although insignificant, higher adoption of EVs will have an effect on pavement conditions 
compared with low adoption of EVs. 

 The effect on pavement conditions may be more severe for highly used and older roads. 
Cities/towns with a higher population density that have higher traffic volume may 
experience more deterioration in their pavements due to EV adoption. Moreover, 
pavements that are reaching or have exceeded their lifecycle may see greater EV-related 
impacts.  

 Although the direct influences on individual road sections’ PSR values seem trivial, the 
corresponding impacts on maintenance requirements and the associated cost at the 
network level may be significant. Future work needs to be conducted to understand the 
impacts on cost.    
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Table 18. Expected PSR in the low adoption scenario 

Year  
 
 
 
 
 

PSR 

Road sections 
A B C D E 

ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT
2025 2.5605 2.5608 2.7541 2.7544 3.1274 3.1280 3.0419 3.0424 3.4517 3.4521 

2030 2.2380 2.2384 2.4638 2.4643 2.9763 2.9771 2.8813 2.8821 3.3362 3.3368 

2035 1.9407 1.9415 2.1963 2.1970 2.8394 2.8407 2.7359 2.7372 3.2317 3.2327

2040 1.6618 1.6630 1.9451 1.9462 2.7122 2.7140 2.6007 2.6027 3.1345 3.1359

2045 1.3967 1.3983 1.7065 1.7080 2.5918 2.5942 2.4729 2.4754 3.0426 3.0444

2050 1.1425 1.1446 1.4777 1.4796 2.4764 2.4795 2.3503 2.3535 2.9545 2.9568

 
 

Table 19. Expected PSR in the medium adoption scenario 

Year  
 
 
 
 
 

PSR 

Road sections 
A B C D E 

ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT
2025 2.5591 2.5608 2.7529 2.7544 3.1252 3.1280 3.0395 3.0424 3.4500 3.4521 

2030 2.2361 2.2384 2.4621 2.4643 2.9733 2.9771 2.8781 2.8821 3.3339 3.3368 

2035 1.9361 1.9415 2.1921 2.1970 2.8324 2.8407 2.7284 2.7372 3.2263 3.2327 

2040 1.6546 1.6630 1.9387 1.9462 2.7015 2.7140 2.5894 2.6027 3.1264 3.1359 

2045 1.3853 1.3983 1.6963 1.7080 2.5753 2.5942 2.4553 2.4754 3.0299 3.0444 

2050 1.1257 1.1446 1.4626 1.4796 2.4524 2.4795 2.3248 2.3535 2.9361 2.9568 
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Table 20. Expected PSR in the high adoption scenario 

Year  Road sections 
 
 
 
 
 
 

PSR 
 

A B C D E 
ET+ CFT 

 
CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT ET+CFT CFT 

2025 2.5575 2.5608 3.3649 3.3668 3.4418 3.4460 3.0366 3.0424 3.3129 3.3177 

2030 2.2313 2.2384 2.9895 2.9942 3.2236 3.2331 2.8700 2.8821 3.2092 3.2188 

2035 1.9297 1.9415 2.6662 2.6746 3.0444 3.0602 2.7179 2.7372 3.1112 3.1262 

2040 1.6400 1.6630 2.3696 2.3866 2.8783 2.9089 2.5662 2.6027 3.0100 3.0381 

2045 1.3695 1.3983 2.0981 2.1202 2.7331 2.7713 2.4306 2.4754 2.9192 2.9535 

2050 1.1087 1.1446 1.8414 1.8696 2.5957 2.6430 2.2988 2.3535 2.8298 2.8713 
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Table 21. Decrease in PSR under low, medium, and  high EV adoption scenarios 

Year 

PSR 
Decrease 

(%) 

Low EV Adoption Scenario 
Road Sections 

A B C D E 
2025 0.0121 0.0101 0.0165 0.0180 0.0114
2030 0.0214 0.0175 0.0257 0.0282 0.0175
2035 0.0419 0.0334 0.0440 0.0485 0.0295
2040 0.0724 0.0557 0.0661 0.0732 0.0437
2045 0.1176 0.0867 0.0922 0.1026 0.0600
2050 0.1864 0.1298 0.1226 0.1373 0.0785

Year 
Medium EV Adoption Scenario 

Road Sections 
A B C D E 

2025 0.0642 0.0537 0.0880 0.0961 0.0609
2030 0.1069 0.0874 0.1282 0.1407 0.0873
2035 0.2781 0.2212 0.2920 0.3220 0.1960
2040 0.5028 0.3867 0.4597 0.5093 0.3039
2045 0.9304 0.6857 0.7310 0.8138 0.4757
2050 1.6528 1.1509 1.0910 1.2211 0.6988

Year 
High EV Adoption Scenario 

Road Sections 
A B C D E 

2025 0.1280 0.0569 0.1224 0.1918 0.1427
2030 0.3188 0.1587 0.2931 0.4199 0.2978
2035 0.6073 0.3145 0.5145 0.7042 0.4805
2040 1.3792 0.7159 1.0518 1.4018 0.9253
2045 2.0617 1.0432 1.3801 1.8096 1.1586
2050 3.1352 1.5048 1.7906 2.3243 1.4456
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Figure 9. Average percentage of PSR decrease due to ET adoption 
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5.2 Effects of EV on Environmental Performance 
The effects of EVs on environmental performance have also been investigated. The entire state of 
Connecticut was used as the testbed. The total number of vehicles operating on Connecticut roads 
was collected, which was observed to be 2,826,350 in 2017 (Federal Highway Administration 
2021). Using the growth factor of 0.8375%, the projected total number of vehicles for 2025, 2030, 
2035, 2040, 2045, and 2050 was estimated (Table 22). Using the low, medium, and high EV 
adoption scenarios shown in Table 8, the projected number of EVs and conventional vehicles 
(CVs) were also estimated. For example, it was estimated that under the high adoption scenario, 
in 2035, the projected number of EVs and CVs in Connecticut would be 722,513 and 2,561,638, 
respectively. 

 Data was also collected for the annual emission per vehicle (U.S. Department of Energy 
2022). EVs typically have zero tailpipe emissions (i.e., direct emissions) (Manjunath and Gross 
2017). However, emissions may be produced by the source of electrical power, such as a natural 
gas/oil/hydro power plant. In geographic areas that use relatively low-polluting energy sources for 
electricity generation, EVs typically only have lower emissions well-to-wheel than similar 
conventional fuel vehicles. Well-to-wheel emissions refer to the emissions associated with fuel 
production, processing, distribution, and use. Concerning CVs, emissions are produced during 
extraction, refining, distribution, and burning of fuels in vehicles (i.e., both direct and well-to-
wheel).  

 Annual emission per EV was observed to be 2,597 lb of Co  equivalent in Connecticut 
(U.S. Department of Energy 2022). This is significantly lower than the national average of 3,932 
lb of Co  equivalent. It shows that Connecticut produces electricity or receives a supply of 
electricity from cleaner and more efficient power plants. On the other hand, annual emission per 
CV was observed to be 11,435 lb of Co  equivalent in Connecticut. Figure 10 and Figure 11 
illustrate the national and Connecticut annual emissions per vehicle, respectively.  

 Using the average emission per vehicle in Connecticut values alongside the total number 
of projected vehicles identified in Table 22, the annual emissions for EVs and CVs under different 
adoption scenarios were identified. For example, under the high adoption scenario, in 2035, 
722,513 EVs generated 1.88E+09 lb of Co  equivalent. For the same time period, 2,561,638 
conventional fuel vehicles resulted in 2.93E+10 lb of Co  equivalent. Due to the higher per vehicle 
emission rate, the overall emission was significantly higher for CVs. Table 23 details the annual 
emission (lb of Co  equivalent) for EVs and CVs under different adoption scenarios in 
Connecticut. 
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  Table 22. Number of EVs and CVs under different adoption scenarios in Connecticut 

Year  
 
 
 

Vehicles 
on road 

 EV Adoption Scenario 
Low Medium High 

EV+CV  EV CV EV CV EV CV 
2025 3,021,360 22,660 2,998,700 120,854 2,900,506 241,709 2,779,651
2030 3,150,017 31,500 3,118,516 157,501 2,992,516 472,502 2,677,514
2035 3,284,152 49,262 3,234,889 328,415 2,955,736 722,513 2,561,638
2040 3,423,998 68,480 3,355,518 479,360 2,944,639 1,335,359 2,088,639
2045 3,569,800 89,245 3,480,555 713,960 2,855,840 1,606,410 1,963,390
2050 3,721,810 111,654 3,610,156 1,004,889 2,716,922 1,935,341 1,786,469

 

 
Figure 10. National annual average emissions per vehicle in the US (U.S. Department of Energy 2022) 
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Figure 11. Annual average emissions per vehicle in Connecticut (U.S. Department of Energy 2022) 

Table 23. Annual emission (lb of 𝑪𝒐𝟐 equivalent) for EVs and CVs under different adoption scenarios in Connecticut 

Year  
 
 
 

Annual emission (lb of 
𝐂𝐨𝟐 equivalent) 

EV Adoption Scenario 
Low Medium High 

EV CV EV CV EV CV 
2025 5.88E+07 3.43E+10 3.14E+08 3.32E+10 6.28E+08 3.18E+10
2030 8.18E+07 3.57E+10 4.09E+08 3.42E+10 1.23E+09 3.06E+10
2035 1.28E+08 3.70E+10 8.53E+08 3.38E+10 1.88E+09 2.93E+10
2040 1.78E+08 3.84E+10 1.24E+09 3.37E+10 3.47E+09 2.39E+10
2045 2.32E+08 3.98E+10 1.85E+09 3.27E+10 4.17E+09 2.25E+10
2050 2.90E+08 4.13E+10 2.61E+09 3.11E+10 5.03E+09 2.04E+10
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 In order to better quantify the impacts of EV on the environment, the emissions under two 
situations (i.e., EV+CV and CV only) were compared. EV+CV means electrical vehicles and 
conventional fuel vehicles both operating on the road based on the EV adoption scenario. CV only 
means only conventional fuel vehicles operating on the road. Table 24 compares the annual 
emission (lb of Co  equivalent) for EV+CV mix and CV only scenario. An index was created to 
assess the decrease in emissions due to the adoption of EV.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑉 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐸𝑉 𝐶𝑉

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑉
∗ 100%                                              9  

 The values of the index under different potential EV adoption scenarios were calculated. 
Figure 12 details these results concerning emission decrease due to EV adoption.  

 Results show that with an increase in the total number of vehicles on the road, the adoption 
of EVs has a more significant impact on reducing the emission level. For example, in the low EV 
adoption scenario, the level of emission decrease changes from 1.55% to 2.32% from 2040 to 2050 
due to switching from CV only to EV+CV mix. This is because more vehicles on the road increase 
the potential for more EVs, resulting in a higher emission decrease. This, coupled with higher EV 
adoption, has a more significant impact on the emission level. For instance, in the high EV 
adoption scenario, the level of emission decrease changes from 30.14% to 40.19% from 2040 to 
2050. Another key observation is that under the low adoption scenario, the impacts of EVs on 
emission reduction are insignificant. Under the medium adoption scenario, it also does not change 
significantly until 2030. Then, there is a linear increase. Under the high adoption scenario, the 
impacts of EVs on emission reduction were observed to be significant. There is a tipping point 
between the years 2035 and 2040. After 2040, there is again an almost linear increase in the 
emission decrease level.   

 Key takeaways for the stakeholders from these results: 

 The effects of EVs on transportation infrastructure environment performance are 
significant. 

 The emission level of EVs is dependent on the source of electricity. Sustainable and 
efficient sources (e.g., natural gas, oil) should be prioritized over other sources (e.g., coal) 
to further reduce emissions. 

 Both the gradual increase in the total number of vehicles over the years and the higher EV 
adoption rate have a positive impact on reducing EV emission levels. 

 Transportation is a major contributor to emissions and global warming. The adoption of 
EVs can help reduce the projected temperature increase and help reach different climate 
goals, such as the Paris agreement (i.e., to limit warming to 1.5°C) (United Nations 2022).   
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 Table 24. Annual emission (lb of 𝑪𝒐𝟐 equivalent) equivalent for EV+CV mix and CV only scenarios 
Year  

 
 
 
 

Annual emission (lb of 
𝐂𝐨𝟐 equivalent) 

Adoption Scenario 
Low Medium High 

EV+CV CV EV+CV CV EV+CV CV  
2025 3.43E+10 3.45E+10 3.35E+10 3.45E+10 3.24E+10 3.45E+10
2030 3.57E+10 3.60E+10 3.46E+10 3.60E+10 3.18E+10 3.60E+10
2035 3.71E+10 3.76E+10 3.47E+10 3.76E+10 3.12E+10 3.76E+10
2040 3.85E+10 3.92E+10 3.49E+10 3.92E+10 2.74E+10 3.92E+10
2045 4.00E+10 4.08E+10 3.45E+10 4.08E+10 2.66E+10 4.08E+10
2050 4.16E+10 4.26E+10 3.37E+10 4.26E+10 2.55E+10 4.26E+10

 

 
 
 
 
 
 
  
 

 
Figure 12. Emission decrease due to EV adoption 
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CHAPTER 6: Conclusions and Future Research Directions 
This study provides a step-by-step delineation with regards to identifying a comprehensive list of 
critical factors for future-proofed transportation infrastructure planning and their inter-
relationships in the U.S. While identifying these factors, using text mining techniques, documents 
from different parts of the U.S. were collected to ensure that the list of factors was comprehensive 
and deemed important by different transportation planning authorities across the U.S. The 
developed procedure to identify these critical factors and their inter-relationships is scalable and 
flexible. By incorporating the latest transportation infrastructure publications, the critical future-
proofed factors and their inter-relationships can be updated to reflect the emerging trends. 
Modeling the effects of future-proofed factors and their inter-relationships further shows that there 
are potentially significant implications for the stakeholders to consider the developed taxonomy 
and the associations of its topics/concepts during the planning process. 

 This study essentially provides a systematic way to understand and classify future risks and 
opportunities that should be carefully incorporated into infrastructure planning. Stakeholders and 
practitioners in planning agencies such as DOTs would benefit from this study in different ways: 

 First, for planners and stakeholders unfamiliar with future-proofed transportation 
infrastructure planning (e.g., new employees), the developed taxonomy can be used for 
training purposes. It could help them to better comprehend the vast array of factors that 
may affect future transportation infrastructure and enrich their knowledge of each 
dimension. Different “realities” of what might happen in the future with regards to the 
identified critical factors could be created to facilitate scenario planning. For example, 
traditionally, planners and stakeholders may mostly consider the characteristics of CVs and 
their effects during transportation infrastructure planning. The taxonomy developed in this 
study highlighted the potential infrastructure utilization and emission level change due to 
a shift in vehicle type, drawing stakeholders’ attention to the effects of increased weights 
of EVs on pavement and bridges and less emission potential. Learning such changes and 
corresponding impacts from the taxonomy, planners and decision-makers can conduct 
predictive modeling and analysis with different EV market penetration scenarios and better 
understand the impacts. Planners and stakeholders can then evaluate budget proposals, 
infrastructure development plans, and design and construction alternatives under various 
plausible scenarios and make informed decisions based on quantitative analysis. 

 Second, for planners and stakeholders who already know many of these critical factors, 
they can best benefit from the inter-relationships identified in this study. Since some of the 
critical planning factors are closely interrelated, planners and stakeholders could use the 
identified significant association rules to understand the possible ripple effects of their 
decision-making and adjust their plans accordingly to achieve optimal outcomes. The 
significant inter-relationships identified facilitate system thinking and could cultivate 
innovative solutions to certain planning challenges, bringing future-proofed transportation 
infrastructure planning to the next level. For example, based on the finding that there is a 
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close association between environmental performance and societal trends, planners and 
stakeholders could consider encouraging the adoption of environmentally friendly 
transportation alternatives (e.g., bike-share, e-scooters) through social media networks to 
improve environmental performance. Innovative social media strategies such as using 
young social media influencers to promote environmentally friendly transportation 
alternatives via paid campaigns could also emerge. 

 Third, at the organizational level, the identified factors in the taxonomy and the inter-
relationships can help transportation agencies to develop their own knowledge bases. 
Organizations and agencies can identify their subject matter experts (SME) or data sources 
with regard to different factors and develop a systematic database to foster the exchange of 
knowledge. Location-specific and community-specific data will be collected and stored in 
a customized database for individual organizations and agencies based on their traits and 
needs. This could facilitate a sustainable way of ensuring a future-proofed planning culture 
across different functional units, different projects, and different employees spanning 
generations in the workforce.  

 Fourth, transportation agencies may have varying degrees of preparedness and response 
capabilities toward a highly complex and uncertain future. Based on the findings of this 
study, different organizations and agencies could communicate and learn from each other 
using the same language, fostering the creation of “future-proofed transportation 
infrastructure planning best practices” across agencies. 

 This study has a few limitations that should be addressed in future studies. These 
limitations and potential future research directions include: 

 One limitation of the presented study is that a limited number of documents, mainly 
published in the U.S., were included in the text mining analysis. The taxonomy developed 
and presented in this study cannot guarantee to encompass all future terminology covering 
emerging technologies and unexpected disruptions in the transportation infrastructure 
domain. More data need to be collected in the future so that a more comprehensive list of 
factors that contribute to future-proofed transportation infrastructure planning could be 
identified, and more interesting inter-relationships among different factors could be 
discovered. A dynamic process for constant modification of the taxonomy should be 
developed in the future to provide opportunities for the merging of new terminologies.  

 A more detailed quantitative exploration of the taxonomy and inter-relationships is needed. 
In this study, using EVs as an example of new technology and vehicle type, the potential 
effects of EVs on (1) pavement conditions and (2) environmental performance in the future 
were modeled in two case studies. The results showed that EVs have minimal impacts on 
pavement conditions but significant impacts on environmental performance. Such type of 
quantification, be it on a city, county, or national level, is needed to better realize the 
applicability of this research.  
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Appendices 
 

A1 
Table 25. Publications considered in this study 

Author(s) Publication title 
Wisconsin Department of Transportation (2009) Connections 2030: statewide long-range transportation plan

State of Alaska Transportation & Public Facilities (2016) Alaska statewide long-range transportation plan: let’s keep moving 
2036

Seattle Department of Transportation (2015) Move seattle: 10-Year strategic vision for transportation
Portland Bureau of Planning and Sustainability (2018) 2035 comprehensive plan

Oklahoma Department of Transportation (2010) The 2010-2035 Oklahoma long range transportation plan
New Mexico Department of Transportation (2015) The New Mexico 2040 plan

Nevada Department of Transportation (2008) Statewide transportation plan – moving Nevada through 2028
Michigan Department of Transportation (2016) Moving Michigan forward: 2040 state long-range transportation plan

City of Largo (2010) 2060 Florida transportation plan
Connecticut Department of Transportation (2015) Connecticut’s bold vision for a transportation future
Washington Department of Transportation (2017) Washington transportation plan (WTP), phase 2 – Implementation

Atlanta Regional Commission (2011) Volume I : 2040 regional transportation plan
San Francisco Municipal Transportation Agency (2018) San Francisco municipal transportation agency strategic plan

Maine Department of Transportation (2010) Statewide long-range transportation plan: 2008 - 2030
Minnesota Department of Transportation (2009) Minnesota statewide transportation policy plan: 2009-2028

Illinois Department of Transportation (2018) Long range transportation plan
Arizona Department of Transportation (2011) Long-range transportation plan 2010-2035

New Jersey Department of Transportation (2008) New Jersey’s Long-Range Transportation Plan: 2030
Pennsylvania Department of Transportation (2016) Long range transportation and comprehensive freight movement plan

City of Chicago (2017) Vision zero Chicago: Action plan
Austin Department of Transportation (2017) Vision zero annual report

New York Metropolitan Transportation Council (2009) A shared vision for a shared future: 2010-2035 NYMTC regional 
transportation plan

Auburn-Opelika Metropolitan Planning Organization (2015) 2040 long range transportation plan
Wilmapco Council (2011) 2040 regional transportation plan update
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Author(s) Publication title
City of Largo (2010) 2060 Florida transportation plan

Northwestern Indiana Regional Coordinating Council 
(2013) 

2035 transportation plan 

Northwest IOWA Planning and Development Commission 
(2012) 

2031 long range transportation plan 

Lawrence Transportation Commission (2018) Transportation 2040: Metropolitan transportation plan
Metroplan (2005) Metro 2030: Metropolitan transportation plan

Salisbury/Wicomico Metropolitan Planning Organization 
(2015) 

Connect 2045: Long range transportation plan 

Nelson/Nygaard Consulting Associates Inc. (2012) Long Range Transit Plan Final Report
Atkins (2012) North Carolina statewide transportation plan

Clark County-Springfield Transportation Coordinating 
Committee (2016)

2040 long range transportation plan 

South Dakota Department of Transportation (2010) South Dakota statewide long range transportation plan
Wyoming Department of Transportation (2018) Long range transportation plan

Texas Department of Transportation (2015) Texas transportation plan 2040
Utah Department of Transportation (2015) 2015-2040 long-range transportation plan

Cambridge Systematics (2012) TransAction 2040: Northern Virginia transportation plan
Hawaii Department of Transportation (2014) Statewide federal aid highways 2035 transportation plan
Georgia Department of Transportation (2006) 2005-2035 Georgia statewide transportation plan

Northwestern University Transportation Center (2016) Mobility 2050: A vision for transportation infrastructure
Meehan and Whitfield (2017) Integrating health and transportation in Nashville, Tennessee, USA: 

From policy to projects
Sinha et al. (2017) Transportation infrastructure asset management in the new 

millennium: continuing issues, and emerging challenges and 
opportunities

Bagloee et al. (2016) Autonomous vehicles: challenges, opportunities, and future 
implications for transportation policies

Asadabadi and Miller-Hooks (2017) Assessing strategies for protecting transportation infrastructure from 
an uncertain climate future

Plakandaras et al. (2019) Forecasting transportation demand for the U.S. market
Sumalee and Ho (2018) Smarter and more connected: Future intelligent transportation system 



                

                www.tidc-utc.org 73 | P a g e  
  

A2 

Table 26. Identified rules with confidence and lift values 

Antecedent Consequent Confidence Lift 
Community value Man-made disruption/risk 0.05 1.80714

New design concept 0.0278 1.00397 
Service performance 0.0175 0.63409 

Funding source 0.0172 0.62315 
Funding allocation strategies 0.0172 0.62315 

Societal trend Environmental performance 0.068966 2.492611 
Traffic volume 0.047619 1.721088 

New process/technology 0.029412 1.063025 
Service performance 0.017544 0.634085 

New travel mode Environmental performance 0.06897 1.454023
Service performance 0.04386 0.924708 

Funding allocation strategies 0.03448 0.727012
Man-made disruption/risk 0.025 0.527083 

Funding source 0.01724 0.363506
New process/technology 0.01471 0.310049 

New design concept Man-made disruption/risk 0.15 1.054167 
Community value 0.142857 1.003968 

Funding allocation strategies 0.137931 0.969349 
Funding source 0.12069 0.84818 

Environmental performance 0.103448 0.727012 
Service performance 0.096491 0.678119 

New 
process/technology 

Traffic volume 0.38095 1.417367 
Man-made disruption/risk 0.375 1.395221 

Vehicle type 0.36364 1.352941 
Societal trend 0.28571 1.063025 

Environmental performance 0.27586 1.026369 
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Service performance 0.21053 0.783282 
Structural condition assessment 0.13636 0.507353 

Natural disruption/risk 0.13043 0.485294 
New travel mode 0.08333 0.310049 

Funding allocation strategies 0.01724 0.064148 
Funding allocation 

strategies 
Service performance 0.22807 0.994858 
New design concept 0.222222 0.969349 

Man-made disruption/risk 0.175 0.763362 
Environmental performance 0.172414 0.752081 

New travel mode 0.166667 0.727011 
Community value 0.142857 0.623153 

Structural condition assessment 0.136364 0.594828 
Traffic volume 0.095238 0.415435 

Natural disruption/risk 0.086957 0.37931 
New process/technology 0.014706 0.064148 

Funding source Service performance 0.22807 0.994858 
Structural condition assessment 0.22727 0.991379 

New design concept 0.19444 0.84818 
Environmental performance 0.17241 0.752081 
Man-made disruption/risk 0.15 0.65431 

Community value 0.14286 0.623153 
Natural disruption/risk 0.13043 0.568966 

Traffic volume 0.09524 0.415435 
New travel mode 0.08333 0.363506 

Structural condition 
assessment 

Traffic volume 0.272727 3.136364 
Vehicle type 0.142857 1.642857 

Natural disruption/risk 0.086957 1.0 
Funding source 0.086207 0.991379 

Funding allocation strategies 0.051724 0.594828 
New process/technology 0.044118 0.507353 

Man-made disruption/risk 0.025 0.2875 
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Service performance Funding source 0.44828 0.994858 
Funding allocation strategies 0.44828 0.994858 

Natural disruption/risk 0.43478 0.964912 
New travel mode 0.41667 0.924708 

New process/technology 0.35294 0.783282 
New design concept 0.30556 0.678119 
Community value 0.28571 0.634085 

Societal trend 0.28571 0.634085 
Traffic volume 0.19048 0.422723 

Man-made disruption/risk 0.025 0.055482 
Environmental 
performance 

Societal trend 0.285714 2.492611 
New travel mode 0.166667 1.454023 

Natural disruption/risk 0.130435 1.137931 
New process/technology 0.117647 1.026369 

Funding source 0.086207 0.752081 
Funding allocation strategies 0.086207 0.752081 

New design concept 0.083333 0.727012 
Traffic volume 0.047619 0.415435 

Traffic volume Societal trend 0.14286 1.721088 
Structural condition assessment 0.13636 3.136364 

New process/technology 0.11765 1.417367 
Service performance 0.03509 0.422724 

Environmental performance 0.03448 0.415435 
Funding source 0.03448 0.415435 

Funding allocation strategies 0.03448 0.415435 
Man-made disruption/risk 0.025 0.301191 

Vehicle type Structural condition assessment 0.136364 1.642857 
New process/technology 0.058824 1.352941 

Man-made disruption/risk 0.025 0.575
Man-made 

disruption/risk 
Community value 0.28571 1.807143 

New process/technology 0.22059 1.395221 
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New design concept 0.16667 1.054167 
Funding allocation strategies 0.12069 0.763362 

Funding source 0.10345 0.65431 
Vehicle type 0.09091 0.575 

New travel mode 0.08333 0.527083 
Traffic volume 0.04762 0.30119 

Structural condition assessment 0.04545 0.2875 
Service performance 0.00877 0.055482 

Natural 
disruption/risk 

Environmental performance 0.103448 1.137931 
Structural condition assessment 0.090909 1.0 

Service performance 0.087719 0.964912 
Funding source 0.051724 0.568966 

New process/technology 0.044118 0.485294 
Funding allocation strategies 0.034483 0.37931 
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A3 
Python code for LDA Latent Dirichlet Allocation (LDA) and Non-negative Matrix 
Factorization (NMF) 
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer 
from sklearn.datasets import fetch_20newsgroups 
from sklearn.decomposition import NMF, LatentDirichletAllocation 
import numpy as np 
def display_topics(H, W, feature_names, documents, no_top_words, no_top_documents): 
    for topic_idx, topic in enumerate(H): 
        print "Topic %d:" % (topic_idx) 
        print " ".join([feature_names[i] 
                        for i in topic.argsort()[:-no_top_words - 1:-1]]) 
        top_doc_indices = np.argsort( W[:,topic_idx] )[::-1][0:no_top_documents] 
        for doc_index in top_doc_indices: 
            print documents[doc_index] 
documents = [] 
with open('sss.txt', 'r') as f: 
    documents  = [line.strip() for line in f] 
no_features = 1000 
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=no_features, 
stop_words='english') 
tfidf = tfidf_vectorizer.fit_transform(documents) 
tfidf_feature_names = tfidf_vectorizer.get_feature_names() 
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=no_features, 
stop_words='english') 
tf = tf_vectorizer.fit_transform(documents) 
tf_feature_names = tf_vectorizer.get_feature_names() 
no_topics = 5 
# Run NMF 
nmf = NMF(n_components=no_topics, random_state=1, alpha=.1, l1_ratio=.5, 
init='nndsvd').fit(tfidf) 
nmf_W = nmf.transform(tfidf) 
nmf_H = nmf.components_ 
lda = LatentDirichletAllocation(n_topics=no_topics, max_iter=5, learning_method='online', 
learning_offset=50.,random_state=0).fit(tf) 
lda_W = lda.transform(tf) 
lda_H = lda.components_ 
no_top_words = 5 
no_top_documents = 8 
print("nmf Model:") 
display_topics(nmf_H, nmf_W, tfidf_feature_names, documents, no_top_words, 
no_top_documents) 
def print_topics(model, vectorizer, top_n=15): 
    for idx, topic in enumerate(model.components_): 
        print("Topic %d:" % (idx)) 
        print([(vectorizer.get_feature_names()[i], topic[i]) 
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                        for i in topic.argsort()[:-top_n - 1:-1]]) 
print_topics(nmf, tfidf_vectorizer) 
print("=" * 20) 
print("LDA Model:") 
display_topics(lda_H, lda_W, tf_feature_names, documents, no_top_words, no_top_documents) 
print_topics(lda, tf_vectorizer) 
print("=" * 20) 
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A4 
R code for Association Rule Mining 
library(arules) 
library(arulesViz) 
library(RColorBrewer) 
mydata<-read.csv("~/R/new_data.csv",header=T,colClasses = "factor") 
rules<-apriori(mydata) 
#sample rule with Man-made disruption/risk 
rules <- apriori(mydata,parameter = list(minlen=2, maxlen=2,supp=0, conf=0.001), 
 appearance=list(rhs=c("Man.made.disruption.risk=yes"), lhs=c("Natural.disruption.risk=yes", 
"Total.number.of.vehicles=yes","Vehicle.Type=yes",  "Service.performance=yes", 
"Funding.allocation.strategies=yes", "New.travel.mode=yes", "New.design.concept=yes", 
"Environmental.performance=yes", "Community.value=yes", "Societal.trend=yes", 
"New.technolgy=yes", "Funding.source=yes", "Structural.condition.assessment=yes"))) 
inspect(rules) 
plot(rules) 
plot(allrules, method = "grouped matrix", measure = "confidence", shading = "lift") 
subrules2 <- head(allrules,  size = "confidence",by = "lift") 
plot(subrules2) 
plot(allrules, method = "matrix") 
plot(allrules,method='grouped') 
plot(rules,method='graph',control=list(type="items", cex=2.02),measure = "lift", shading = 
"confidence",  nodeCol = brewer.pal(n=4, "Greens"),    edgeCol = brewer.pal(5, "BuPu"), alpha 
= 1) 
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