

Surface Crack Detection and Segmentation Using Visual and Combined RGB and IR Images

Zahra Ameli, Civil and Environmental Department, University of Maine

Visual and Thermal Sensors for Bridge Inspection

- Visual sensors are most common type of sensors bridge defect for which İS used classification and quantification.
- Thermal sensors overcomes limitations of RGB sensors such as adverse environmental conditions, dust and vibrations effect but blurred details, noise and low resolution are its own challenges.
- Fusing thermal and RGB images to a single image takes advantage of both imagery techniques.

Data Acquisition and Annotation

- FLIR C5 camera is used to capture two set of images from surface cracks; RGB and combined
- 242 RGB and combined images are captured from bridge deck surface cracks
- ImgLab online tool is used to perform polygon image annotation
- Annotated images are fed into Mask R-CNN for object detection and instance segmentation

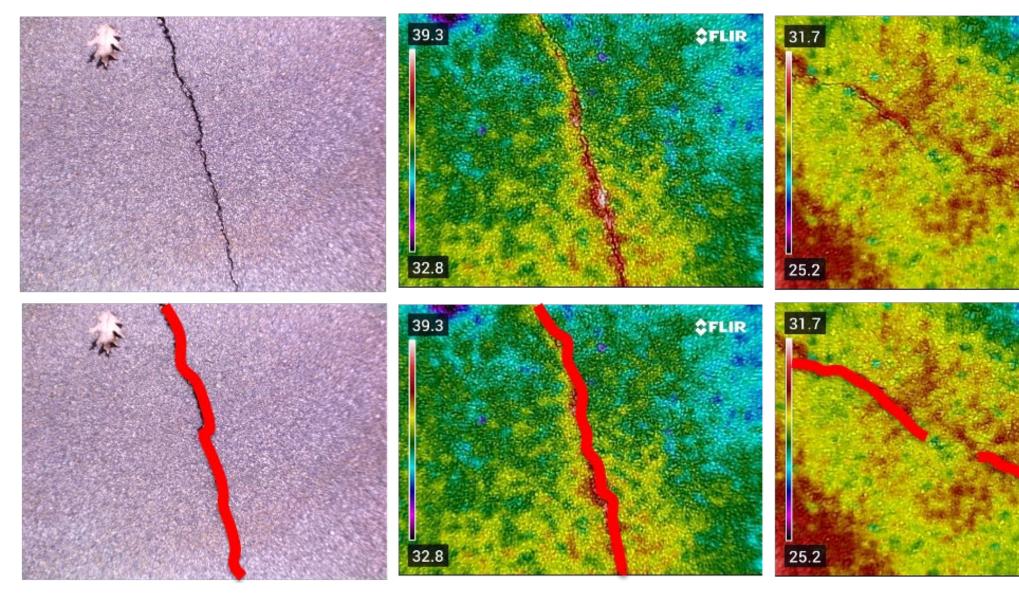
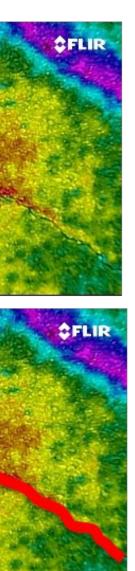
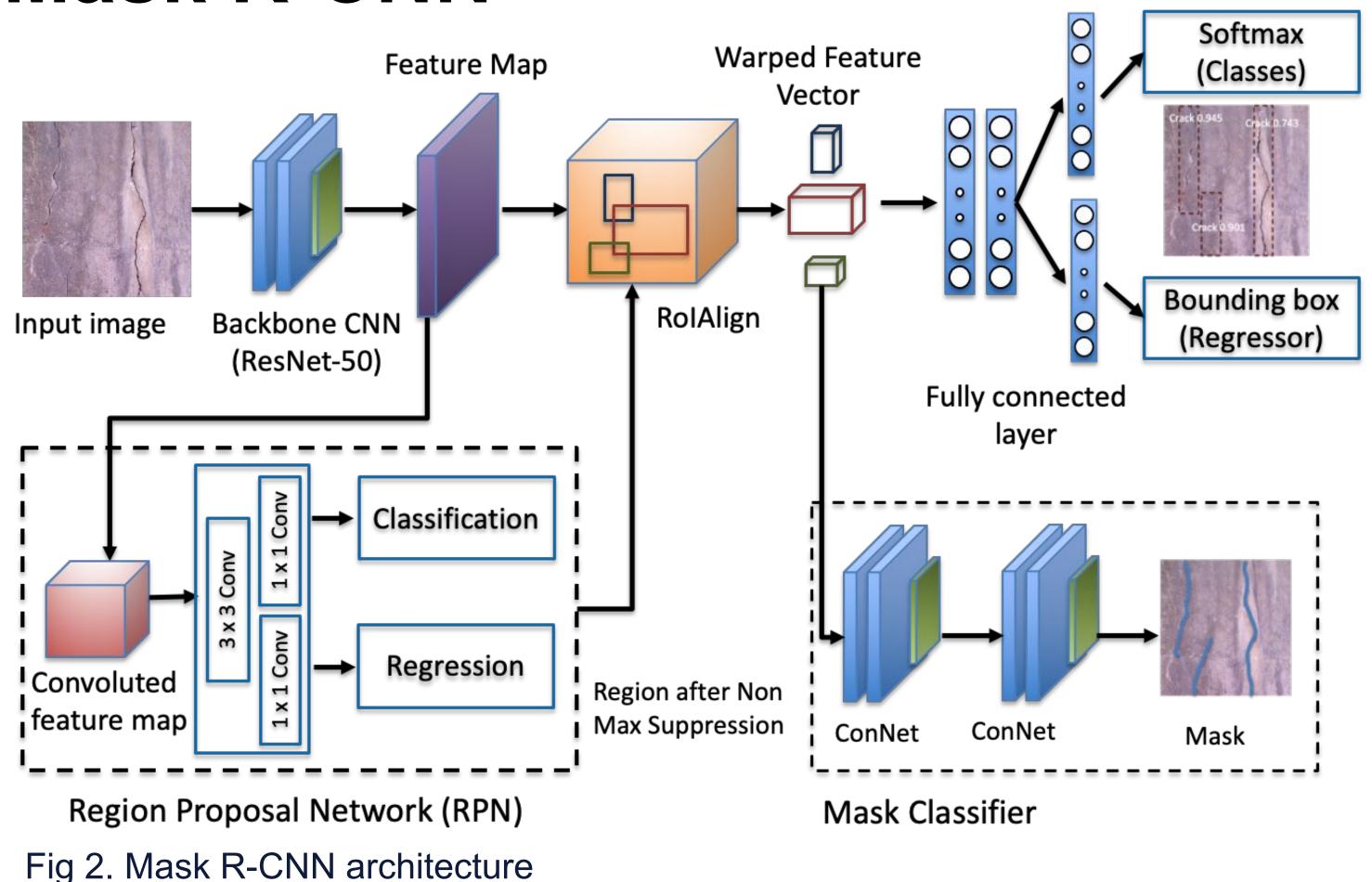


Fig. 1. Samples of original and annotated RGB and combined images

Mask R-CNN

detection,





Model implementation, Training and Testing

- Mask R-CNN repository by Matterport, a 3D virtual-tour software company is used
- ResNet-50 architecture and a Feature Pyramid Network (FPN) is its backbone
- "Dataset" class is modified to suit our own cracks dataset
- Pre-trained weights options: COCO, ImageNet
- The code was written in the Python 3 programming language and the Keras and TensorFlow deep-learning libraries
- The network is trained using real-life images of cracks
- The data is split into 169 images for the training set and 73 images for the test set

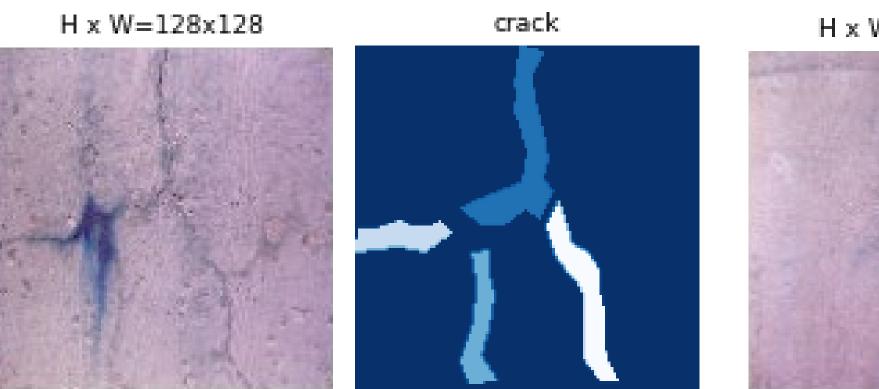
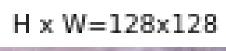


Fig 3. Samples of original images and corresponding mask

Transportation Infrastructure Durability Center AT THE UNIVERSITY OF MAINE



crack



Performance measure

mask branch

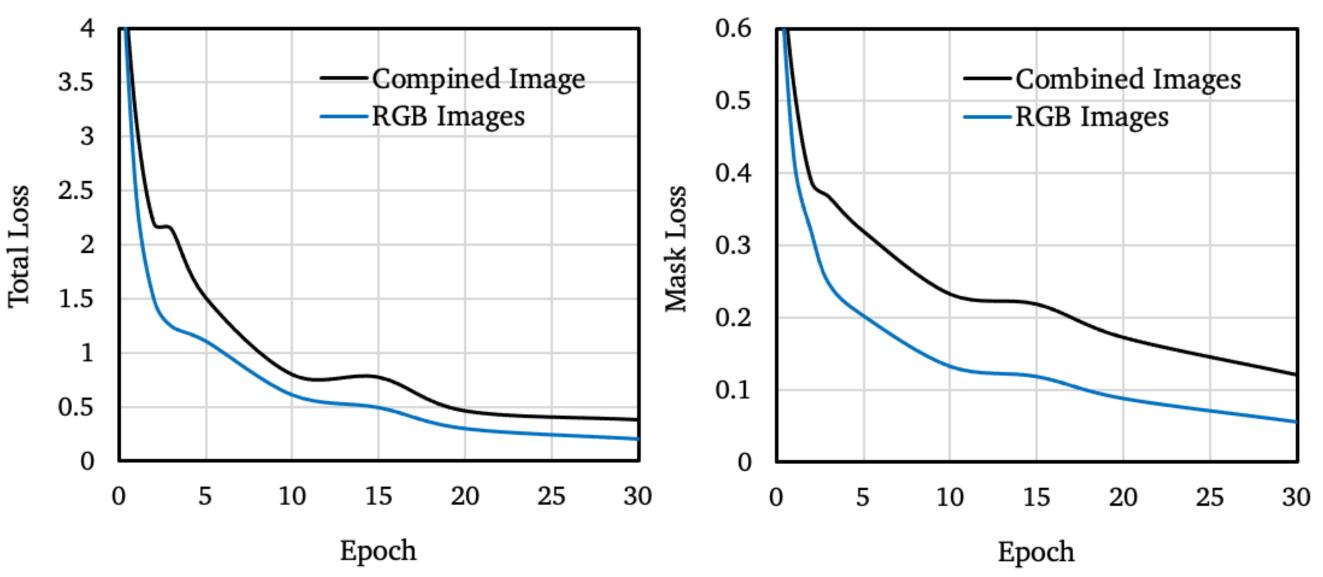


Fig 4. Total and Mask Loss

Conclusions

- 0.27 and 0.21 respectively.

- the network for efficient performance

Acknowledgements: Funding for this research is provided by the Transportation Infrastructure Durability Center (TIDC) at the University of Maine under grant 69A3551847101 from the U.S. Transportation's University Department of **Transportation Centers Program.**

Advisor: Eric Landis, PhD, P.E.

Loss functions are designed considering the task of each output layer: classification and regression layers in the RPN, box-classification, box-regression layers in the classification stage, and the output layer of the

• Mask R-CNN model may replace the existing visual inspection of concrete structures with high accuracy. • The mAP values for RGB and combined images are

• Quantity and quality of the training data and annotation affects the accuracy of results.

• Original Mask R-CNN is developed for COCO dataset which is a simple data compared to cracks Backbones with higher model capacities, such as ResNet-101 might improve accuracy of the model Future works: Multi-class defect detection and adding edge detection filters such as Sobel filter to

November 2022 – www.tidc-utc.org