

Quarterly Progress Report:

Project Number and Title: 2.10 Durability Evaluation of Carbon Fiber Composite Strands in Highway Bridges Research Area 2: New materials for longevity and constructability

PI: Roberto Lopez-Anido, University of Maine

Co-PI(s): Keith Berube and Andrew Goupee, University of Maine

Reporting Period: 07/01/2020 to 09/30/2020

Date: 09/30/20

Overview:

Work performed during the reporting period:

- The literature review on existing use of carbon fiber cables/strands in civil infrastructure was completed.
- The wireless system has been purchased. Currently, we are integrating the wireless system with the current LabView program.
- We coordinated with MaineDOT having the network switch installed at the Penobscot-Narrows Bridge site, which would provide online access for our monitoring systems.
- The hardware installation plan was submitted to MaineDOT Bridge Engineering and it was approved. MaineDOT has contracted the electrical work to provide power for the systems at the Bridge based on our instrumentation plan.
- We conducted weekly trips to the Penobscot Narrows Bridge to install the necessary hardware for the implementation of the wireless system. We have completed 25% of the hardware installation work.
- We acquired continuous monitoring data from one stay anchorage location during July and August. The instrumentation interface was removed in September for implementation of the new wireless system. Continuous data will resume after the wireless system installation is completed.

Table 1: Task Progress					
Task Number	Start Date	End Date	Percent Complete		
Task 1: Upgrade Data Acquisition System	6/1/2019	12/31/2020	50%		
Task 2: External Environmental Sensing	1/1/2020	12/31/2020	10%		
Task 3: Implement Analytical Model	11/1/2019	8/30/2021	25%		
Task 4: Durability Assessment	11/1/2019	12/31/2021	25%		

	Table 2: Budget Progress	
Entire Project Budget	Spend Amount	Spend Percentage to Date
To be completed by Grant/Fiscal		
Manager, Advanced Structures		
and Composites Center, UMaine		

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events					
Title	Event	Type	Location	Date(s)	
Durability Evaluation of Carbon Fiber Composite Strands in Highway Bridges	2020 TIDC Annual Conference	Abstract	Virtual	August 12-13, 2020	
TIDC 2.10 Durability Evaluation of Carbon Fiber Composite Strands in Highway Bridges	2020 Student Poster Contest	Poster	Virtual	September 25, 2020	

Rev: 11.14.2019

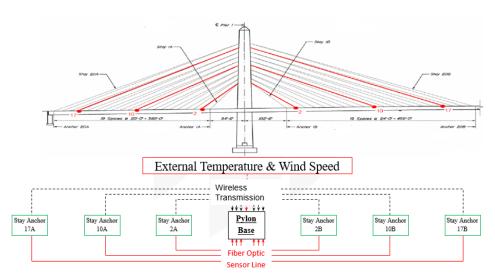


Figure 1: Data acquisition layout for carbon fiber composite strands in the Penobscot-Narrows Bridge

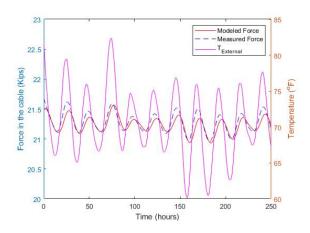


Figure 2: Predictive model of cable forces and temperature

Table 4: Publications and Submitted Papers and Reports				
Type Title Citation Date Status				Status
N/A				

Participants and Collaborators:

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members				
Individual Name	Email Address	Department	Role in Research	
Roberto Lopez- Anido	RLA@maine.edu	UMaine Civil and Environmental Engineering	Project PI, Graduate student coadvisor, and Structural lead.	
Keith Berube	keith.berube@maine.edu	UMaine Mechanical Engineering Technology	Project Co-PI and Data acquisition instrumentation lead.	
Andrew Goupee	Andrew.goupee@maine.edu	UMaine Mechanical Engineering	Project Co-PI, Graduate student co-advisor, and Modeling lead.	

Rev: 11.14.2019

Table 6: Student Participants during the reporting period					
Student Name Email Address Class Major Role in research					
Braedon Kohler		Masters	Mechanical Engineering	Modeling, programming and data acquisition	

Table 7: Student Graduates				
Student Name Role in Research		Degree	Graduation Date	
N/A				

Table 8: Research Project Collaborators during the reporting period						
		Contribution to the Project				
Organization	Location	Financial	In-Kind	Facilities	Collaborative	Personnel
		Support	Support		Research	Exchanges
Maine DOT	Augusta, ME		X			

Technical Champion:

Name: Dale Peabody

Title: Director, Transportation Research

Organization: MaineDOT

Location (City & State): Augusta, ME Email: Dale.Peabody@maine.gov

Changes:

The schedule has been affected by disruptions of day-to-day campus and field work due to the University shutdown in response to COVID-19 health safety precautions.

Planned Activities:

The following activities are planned for the next three month period:

- Complete the hardware installation at the Bridge site.
- Coordinate with the electrical contractor the steps to complete the power installation.
- Integrate our LabView program with the wireless and fiber optic systems.
- Procure and install the temperature and wind speed sensors.

Rev: 11.14.2019