

Quarterly Progress Report:

Project Number and Title: 2.11 Culvert Rehabilitation using 3D Printed Diffusers Research Area 2: New materials for longevity and constructability

PI: Roberto Lopez-Anido, University of Maine **Co-PI(s):** James Anderson and Douglas Gardner, University of Maine **Reporting Period:** 01/01/2021 to 03/31/2021 **Date:** 03/31/21

Overview:

Main activities in this quarter were:

- Plan lab testing and material characterization
- Prepare conference paper presentation
- Plan demonstration project with Technical Champion and NHDOT engineers.

Meeting the Overarching Goals of the Project:

The activities performed in this quarter supported the following project tasks:

- Task 1: Initial feasibility study: Design and manufacturing of a 3D printed diffuser prototype for demonstration at a site in Thorndike, Maine
- Task 2: Manufacturing of 3D printed diffuser parts for lab testing and material characterization

Accomplishments:

- Successfully manufactured an 8.5 ft long 2.5 ft wide culvert diffuser using large scale additive manufacturing of PLA/wood.
- Demonstrated that optimized designs of culvert diffusers based on site-specific hydraulic conditions can be manufactured using large-scale 3D printing at lower cost than current methods.

Task Progress and Budget:

Table 1: Task Progress							
Task Number	Start Date	End Date	% Complete				
Task 1.1: Initial feasibility study: Design and							
manufacturing of a 3D printed diffuser prototype for	9/1/2020	12/31/2020	100%				
demonstration at a site in Thorndike, Maine							
Task 1.2: Manufacturing of 3D printed diffuser parts	10/1/2021	8/31/2020	25%				
for lab testing and material characterization	10/1/2021	0/51/2020	2370				
Task 1.3: Material durability evaluation in the	1/1/2021	8/31/2021	5%				
laboratory	1/1/2021	0/51/2021	570				
Task 2.1: Monitoring of the 3D printed diffuser at	10/1/2021	6/30/2022	0%				
the site in Thorndike, Maine	10/1/2021	0/50/2022	070				
Task 2.2: Develop design concepts for 3D printed	7/1/2021	8/31/2022	0%				
diffuser systems (Options 1, 2 & 3)	// 1/2021	0/51/2022	070				
Task 2.3: Commercialization and documentation of	10/1/2021	8/21/2022	0%				
the rehabilitation technology	10/1/2021	8/31/2022	070				
Phase 1 Overall	9/1/2020	8/31/2021	Phase 1 % Complete				
Phase 2 Overall	7/1/2021	8/31/2022	Phase 2 % Complete				

Table 2: Budget Progress					
Project Budget Spend – Project to Date % Project to Date*					
Enter Phase 1 Full Budget	Enter Phase 1 Full Spend Amount	Enter Phase 1 % Spent			
Enter Phase 2 Full Budget	Enter Phase 2 Full Spend Amount	Enter Phase 2 % Spent			

*Include the date the budget is current to.

Professional Development/Training Opportunities:

N.A.

Technology Transfer:

Meeting with NHDOT engineers and Alex Mann (Technical Champion) to plan the design and manufacturing of outlet diffuser for CMP liner and inlet upgrade project, NH 85/Newfields Rd, Exeter - Rocky Hill Brook. Mar. 8, 2021.

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events						
Title	TitleEventTypeLocationDate(s)					

Table 4: Publications and Submitted Papers and Reports					
Туре	Title	Citation	Date	Status	
Conference Paper	Large-Scale Extrusion- Based 3D Printing for Highway Culvert Rehabilitation	Bhandari, S., Lopez-Anido, R.A., Anderson, J. and Mann, A. "Large-scale extrusion-based 3D printing for highway culvert rehabilitation," SPE-ANTEC 2021 Conference Proceedings, May 10-14, 2021.	Mar. 2, 2021	Accepted for presentation	

Figure 1: 3D printing setup of the culvert diffuser prototype

Participants and Collaborators:

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members					
Individual Name	Individual Name Email Address Department		Role in Research		
Roberto Lopez-Anido	RLA@maine.edu	UMaine Civil and Environmental Engineering	Project PI, Graduate student supervisor, and Structural design and material durability lead.		
James Anderson	James.m.anderson@maine.edu	UMaine Advanced Structures and Composites Center	Co PI, Large-scale 3D printing lead		
Douglas Gardner	douglasg@maine.edu	UMaine School of Forest Resources	Co PI, Extruded material formulation lead.		

Table 6: Student Participants during the reporting period					
Student Name	Email Address	Class	Major	Role in research	
Sunil Bhandari		Ph.D. Candidate	Civil Engineering	Structural design and modeling, 3D printing process design and implementation	
Felipe Saavedra		M.S. student	Civil Engineering	Material durability evaluation in the laboratory	

Table 7: Students who Graduated During the Reporting Period					
Student NameDegreeGraduationEmployment or continueDatedegree					

Table 8: Research Project Collaborators during the reporting period						
		Contribution to the Project				
Organization	Location	Financial	In-Kind	Facilities	Collaborative	Personnel
		Support	Support		Research	Exchanges
Maine DOT	Augusta, ME	Х	Х		Х	

Table 9: Other Collaborators					
Collaborator Name and Title	Contact Information	Organization and Department	Contribution to Research		
Timothy S. Mallette, P.E.		NHDOT Specialty Section, Hydraulics	Identified demonstration project and coordinated		
Don LeBlanc, P.E.		President DLVEWS, Inc.	Culvert design consultant		

Technical Champion:

Name: Alexander Mann Title: Hydrologist Organization: MaineDOT Location (City & State): Augusta, ME Email: Alexander.Mann@maine.gov

Changes:

The schedule has been affected by disruptions of day-to-day campus and field work due to the University restrictions imposed in response to COVID-19 health safety precautions.

Planned Activities:

The following activities are planned for the next three month period:

- Manufacture 3D printed diffuser parts/plates for laboratory testing and material characterization (Task 2)
- Review the literature and guidelines on environmental durability evaluation of thermoplastic composite materials for large-scale 3D printing (Task 3)
- Select accelerated durability testing protocols in the laboratory (Task 3)
- Identify potential demonstration projects for culvert diffusers in collaboration with MaineDOT (Task 5)