

Transportation Infrastructure Durability Center **AT THE UNIVERSITY OF MAINE**

Soil State Dependency of Carbonation for Rapid Strength Improvement

;²Assistant Professor, Civil and Environmental Engineering, University of Maine, Orono, Maine USA. e-mail: <mark>a</mark> ¹Graduate student, Civil and Environmental Engineering, University of Maine, Orono, Maine, USA. e-mail: s ³Assistant Professor, Department of Civil Engineering, Center for Advanced Construction Materials (CACM), University of Texas at Arlington, Texas, USA. e-mail:

1. Motivation/Background

- Advance novel methods to generate rapid gains in strength for soil improvement—which may be applied to new and/or existing infrastructure
- Potential to reduce construction costs and schedule (e.g. conventional lime stabilization via pozzolanic reaction is slow)
- Use materials and waste byproducts that reduce the high carbon footprint imposed by industry (e.g. cement/lime production involves high energy consumption and CO_2 gas emissions)

2. Accelerated soil carbonation-a more sustainable approach **Reaction mechanism for soil strength improvement**

- Introducing CO₂ gas into soil in presence of water and alkaline
- Most often soil is alkali deficient which requires to add any alkaline source [e.g. lime, $Ca(OH)_2$] with soil before carbonation

Ca(OH) ₂ [s]+	H ₂ O [l]	+ CO ₂ [g]	\rightarrow CaCO ₃ [s] (\downarrow)
Step 1		Step 2 $CO_3^{2-} = Ca$	
Untreated soils		$CO_3^{2-} = Ca$ onation	Cementation

Note: s=solid, l=liquid, aq=aqueous=dissolved in water, g=gas, \downarrow =deposited **Potential benefits**

- Utilize waste CO₂ gas captured from industry and production of lime itself to enhance sustainability (i.e. carbon sequestration)
- Rapid soil stabilization (i.e. reduction in construction cost and time)

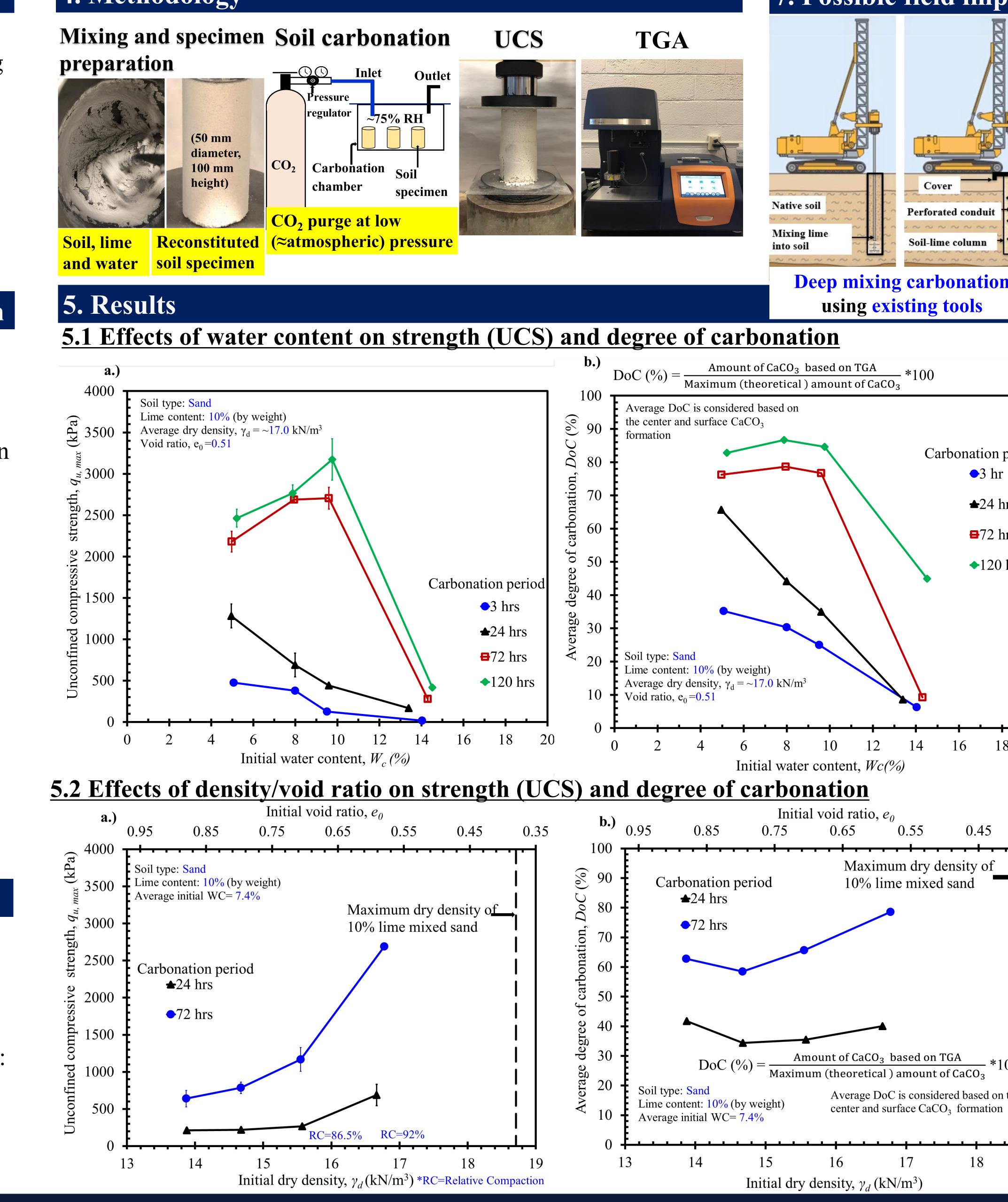
3. Laboratory investigation

Objectives

Understand the relative influence of initial water content and density/void ratio on strength and binder formation (degree of carbonation) of lime mixed granular soils

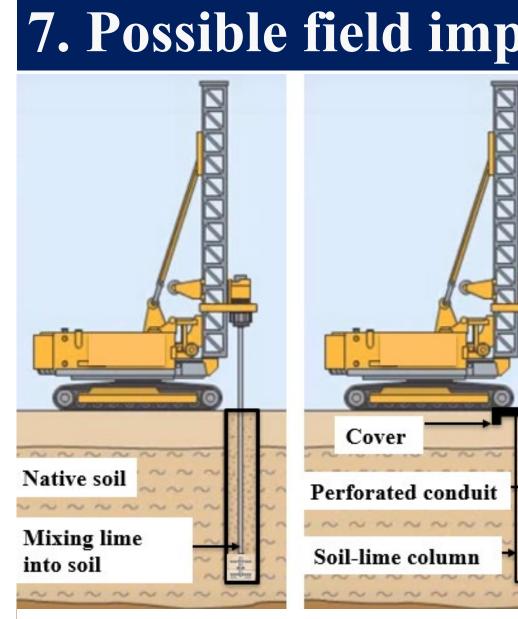
Soil type: Sand; Lime content: 10% (by weight); Carbonation time: 3-120 hours

Testing


Unconfined compressive strength (UCS)

Thermogravimetric analyses (TGA)

2020 TIDC Annual Student Poster Competition


SK Belal Hossen, EI¹, Aaron P. Gallant, PhD, PE² and Warda Ashraf, PhD³

4. Methodology

 $+2H_2O[l]$

n in soils

olementation and application					
	Step 1-Mixing alkaline (e.g. lime) into				
	ground; Step 2- Permeation of CO ₂				
	Mass mixing and				
CO ₂	carbonation				
*					
	Shallow stabilization Carbonated lime mixed soil				
n	column-deep stabilization				
	6. Summary/conclusions				
	Accelerated carbonation of lime				
	mixed granular soils at low pressure				
	is an emerging alternative for rapid				
nomiad	stabilization of soils.				
period	Rate of carbonation and strength				
nrs	improvement is dependent on initial				
nrs	state of soil such as water content				
hrs	and density/void ratio for a				
	particular lime content				
	Degree of carbonation (DoC) is strongly correlated with initial WC				
	strongly correlated with initial WC. The strength in general increases				
	with increasing DoC, and maximum				
	UCS as high as 3 MPa is achieved				
8 20	with DoC 80%.				
	Strength of carbonated soil at				
0.35	constant WC is highly dependent on				
····	initial density. The UCS is reduced				
	by more than 50% when density of				
	lime mixed sand is decreased by 10				
i	% (i.e. 16.8 to 15.6 kN/m ³)				
	Acknowledgement				
i	Funding for this research is provided by				
	the Transportation Infrastructure				
00	Durability Center at the University of				
the	Maine under grant 69A3551847101 from				
	the U.S. Department of Transportation's University Transportation Centers				
19	Program.				