

Quarterly Progress Report:

Project Number and Title: 2.7 High Performance Concrete with Post-Tensioning Shrinking Fibers
Research Area: Thrust 3 Use new materials and systems to build longer-lasting bridges and accelerate construction
PI: Dryver Huston, University of Vermont
Co-PI(s): Ting Tan, University of Vermont
Reporting Period: 7/1/20 – 9/30/20
Submission Date: September 30, 2020

Overview: (Please answer each question individually)

Laboratory studies resumed in August following a pandemic related shutdown.

- The laboratory experiments included the fabrication and testing of concrete beam specimens that contain steel rings that shrink post cure to induce a prestress in the concrete. The results of the failure tests indicated an increase post-fracture strength for the prestressed rings versus controls, along with an increased post-cracking acoustic emission behavior. This activity advanced Task 1 and Task 2. Figure 1 shows the shrinking fiber techniques presently under investigation.
- Located sources of chitosan fiber that has the potential for serving as a polymer-based shrinking fiber. A small (1 kg) batch of sisal-type fibers has been acquired, Figure 2. Preliminary tests of shrinking performance have been started. This activity advanced Task 1.

Figure 1 Shrinking fiber testing techniques under investigation

Figure 2 Sisal type chitosan fiber

Table 1: Task Progress							
Task Number	sk Number Start Date End Date % Complete						
Task 1: Shrinking Fiber	6/1/19	5/30/21	45%				
Development and							
Manufacture							
Task 2: Laboratory	6/1/19	5/30/21	35%				
Performance Testing							
Task 3: Mechanical	6/1/19	5/30/21	35%				
Modeling							
Overall Project:	6/1/19	5/30/21	38.3%				

Table 2: Budget Progress					
Project Budget	Spend – Project to Date	% Project to Date*			
\$220,000	\$117,865.29 - 09/28/20	53.58%			

Training/professional development – Graduate student Diarmuid Gregory attended FHWA Advanced Sensing Technology (FAST) NDE Lab Webinar Series - FHWA Mobile Concrete Laboratory - July 27, 2020

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events						
Title	Event	Туре	Location	Date(s)		
High Performance Concrete with Post- Tensioning Shrinking Fibers	2020 TIDC Annual Student Poster Contest	Student Poster Contest	TIDC	2020		
High Performance Concrete with Post- Tensioning Shrinking Fibers	33rd Rhode Island Transportation Forum	Forum	Rhode Island	Abstract submitted and accepted for presentation October 30, 2020		

Table 4: Publications and Submitted Papers and Reports						
Туре	Type Title Citation Date Status					
NA						

Participants and Collaborators:

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members					
Individual Name	Email Address	Department	Role in Research		
Derry Huston	der war huston Quine adu	Mechanical	PI		
Dryver Huston	dryver.nusion@uvm.edu	Engineering			
		Civil and	Co-PI		
Ting Tan	Ting.Tan@uvm.edu	Environmental			
_		Engineering			

Table 6: Student Participants during the reporting period						
Student Name	Student NameEmail AddressClassMajorRole in research					
Diarmuid		M.S./Senior	Mechanical	Graduate research		
Gregory Engineering assistant						

Table 7: Student Graduates					
Student Name	Role in Research	Degree	Graduation Date		
NA					

Table 8: Research Project Collaborators during the reporting period						
Contribution to the Project						
Organization	Location	Financial	In-Kind	Facilities	Collaborative	Personnel
		Support	Support	raciities	Research	Exchanges
NA						

Table 9: Other Collaborators					
Collaborator Name and TitleContact InformationOrganization and DepartmentContribution to Research					
James Wild	Vermont Agency of Transportation	Materials	Technical Champion		

Who is the Technical Champion for this project? Name: James Wild Title: Concrete Materials Manager Organization: Vermont Agency of Transportation Location (City & State): Montpelier, VT Email Address: Jim.Wild@vermont.gov

Changes:

Due to the pandemic-related shutdown of experimental facilities at the UVM campus, the research pivoted to numerical modeling of concrete with embedded shrinking fiber elements in the Spring of 2020. Following a partial reopening of research laboratories at UVM during mid-summer 2020, project focus switched back to experimental testing of concrete

beams with prestressing fibers. Tests included beams with shrinking steel rings. Two sources of chitosan fiber have been identified. A 1 kg sample has been obtained from one of the sources. If these fibers perform as hoped, the use of them has the potential to accelerate progress on the project by bypassing the chitosan fiber manufacture process at UVM. Previous work at UVM has produced chitosan fibers with uncertain geometries, but effective shrinking capabilities, in a labor-intensive process. These new fibers have favorable geometry, but the shrinking performance remains to be determined. Due the laboratory shutdown, the original proposed completion date of 5/31/21 may be difficult to achieve and may necessitate consideration of no-cost extension.

Planned Activities:

The planned activities in the next quarter will focus on laboratory testing of concrete formulations with various shrinking fiber constituents. Assuming modest success with the efforts, we then plan to engage more closely with our Technical Champion (Jim Wild) at VTrans to see how this technique can be made practical for use as a potential performance concrete in transportation structures.