UTC Project Information		
Project Title	Electromagnetic Detection and Identification of Concrete Cracking in Highway Bridges	
University	University of Massachusetts Lowell	
Principal Investigator	Tzuyang Yu	
	<u>Tzuyang_Yu@UML.EDU</u> / (978) 934-2288	
	Department of Civil and Environmental Engineering	
	University of Massachusetts Lowell	
	Kitson Hall Room 200-T	
PI Contact Information	One University Avenue Lowell, MA 01854	
	Lowell, MA 01034	
Funding Source(s) and	East Act (Endown!), \$220,405 (V1 V5)	
Amounts Provided (by each agency or organization)	Fast-Act (Federal): \$330,495 (Y1 ~ Y5) UMass Lowell: \$339,446 (Y1 ~ Y5) + \$60,000 (Y3)	
Total Project Cost	\$330,495 (Year 1 ~ Year 5)	
Agency ID or Contract	\$350,475 (1 car 1 * 1 car 5)	
Number	ORCID.org ID Number: 0000-0001-7532-3574	
Start and End Dates	01/01/2019 ~ 12/31/2023	
	The problem we are trying to solve is the structural assessment of aging	
	concrete bridges (reinforced and prestressed) in New England, targeting at	
	concrete cracking and degradation (e.g., carbonation, alkali-silica reaction).	
	The problem is important because that the integrity of concrete cover	
	indicates not only mechanical strength of the cross section but also the level	
	of protection for steel corrosion. Concrete cracking and steel corrosion can	
	occur to any component in concrete bridges. We propose to 1) conduct field radar inspection (using ground-penetrating radar (GPR) and synthetic	
	aperture radar (SAR), and impact-echo) for 2D and 3D radar imaging and to	
Brief Description of Research	2) develop a damage detection model for predicting the level of structural	
Project	damage for concrete bridges.	
	We have developed a portable SAR imaging sensor capable of wirelessly	
	transmitting data from the sensor to an adjacent laptop computer. The	
	imaging capability and wireless data transmission have been validated in the	
	laboratory.	
	CN3x6, 120 steps 450 40 400 35 400 35 400 35 400 35	
Describe Implementation of	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
Research Outcomes (or why	250 8, 20 9, 20 15 15 200 200 200 200 200 200 200 20	
not implemented)	100 100 100 100 100 100 100 100 100 100	
Place Any Photos Here	0 10 20 30 0 10 20 30 0 10 20 30 Cross-range, r _s (m) Cross-range, r _s (m)	
	This project will enhance the transportation infrastructure durability as	
	follows:	
T (D C)	• Correlation between our proposed radar technique (remote synthetic	
Impacts/Benefits of	aperture radar or SAR) and a commercial radar technology (ground	
Implementation (actual, not anticipated)	penetrating radar or GPR) can help bridge inspection engineers to use remote sensing for crack detection and quantification.	
annerpateu)	remote sensing for crack detection and quantification.	

	• Field application of electromagnetic sensors for subsurface sensing such as sink hole detection.
	• We have submitted our quarterly progress report for September 30, 2021.
Web Links	Updates of research activities are posted on our project website at
 Reports 	https://www.uml.edu/Research/tidc/projects/electromagnetic-detection-
 Project website 	identification-bridge-cracking.aspx