

UTC Project Information	
Project Title	Condition Assessment of Corroded Prestressed Concrete Bridge Girders
University	University of Massachusetts Lowell
Principal Investigator	Tzuyang Yu
	<u>Tzuyang_Yu@UML.EDU</u> / (978) 934-2288
	Department of Civil and Environmental Engineering
	University of Massachusetts Lowell
	Falmouth Hall Room 107-C
DI Contrat Information	One University Avenue
PI Contact Information	Lowell, MA 01854
Funding Source(s) and	
Amounts Provided (by each	
agency or organization)	Fast-Act (Federal): \$86,309, UMass Lowell & WNEU: \$89,174 (match)
Total Project Cost	\$175,483 (Year 1)
Agency ID or Contract Number	OPCID and ID Number 0000 0001 7522 2574
	ORCID.org ID Number: 0000-0001-7532-3574
Start and End Dates	$01/01/2019 \sim 09/30/2021$ The problem we are trying to solve is the condition assessment of corroded
	prestressed concrete (PC) bridge girders in New England. The problem is
	important because that PC bridge girders are a critical component of
	highway bridges. Concrete spalling and prestressing strand corrosion not
	only cause losses in prestress but also lead to premature failures of PC
	bridges. We propose to 1) conduct multiphysical field inspection (using 3D
	photogrammetry, radar, impact-echo, and ultrasound) and to 2) develop an
Brief Description of Research	integrated assessment framework for predicting the level of structural
Project	damage and prestress losses for PC bridge girders.
	We have developed a method to control the level of steel rebar corrosion
	inside reinforced concrete cylinder specimens in order to subject them to a
	pull-out test. Range = 35cm / 0/% corrosion Range = 35cm / 100/% corrosion
Describe Implementation of	
Research Outcomes (or why	
not implemented) Place Any Photos Here	
Flace Ally Fliotos fiere	$\frac{Cross-range, r_x(m)}{This project will enhance the transportation infrastructure durability as}$
	follows:
	• Efficient condition assessment algorithm – The chemical-mechanical
	model proposed by this research will provide a theoretical, but
	computationally efficient algorithm for assessing the remaining structural
	strength of PC bridge girders.
	• Data-driven decision-making – The vulnerability function for defining
Impacts/Benefits of	multiple damage states adopts the Bayesian framework, a data-driven
Implementation (actual, not	method. The outcome can be customized improve the durability of PC
anticipated)	bridges through effective structural repair.

Transportation Infrastructure Durability Center AT THE UNIVERSITY OF MAINE

Web Links

- Reports
- Project website
- We have submitted our quarterly progress report on September 30, 2021.
- Updates of research activities are posted on our project website at
- https://www.uml.edu/Research/tidc/projects/assessment-corrodedprestressed-bridge-girders.aspx