

Project Number and Title: C11 Development of a system-level distributed sensing technique for long-term monitoring of concrete and composite bridges

Research Area: Thrust 1: Transportation infrastructure monitoring and assessment for enhanced life **PI:** Tzuyang Yu (UML)

Co-PI(s): Susan Faraji (UML), Xingwei Wang (UML), Zhu Mao (UML), Bill Davids (UMaine), Ehsan Ghazanfari (UVM)

Reporting Period: 04/01/2020~06/30/2020

Date: 06/26/2020

Overview:

The research problem we are trying to solve is the long-term monitoring problem of bridges (e.g., concrete and composite bridges), using multiple modes of sensing technology including fiber optic, video motion, and electromagnetic sensors. Table 1provides our progress on individual tasks. Table 2 reports our budget progress. Until the second quarter of the project, we have not started our project tasks in the laboratory, due to the delay of funds availability and the impact of covid-19 pandemic in Massachusetts.

Table 1: Task Progress					
Task Number	Start Date	End Date	Percent Complete		
Task 1	01/01/20	02/28/20	10% (delayed)		
Task 2	01/01/20	03/31/20	50% (delayed)		
Task 3	01/01/20	07/31/20	0% (delayed)		
Task 4	07/31/20	08/15/20	0%		
Task 5	08/15/20	08/20/20	0%		
Task 6	08/15/20	12/31/21	0%		
Task 7	08/20/20	12/31/21	0%		
Task 8	01/01/20	12/31/21	5%		

Table 2: Budget Progress					
Entire Project Budget Spend Amount Spend Percentage to Date					
\$166,304 (Year 1)	\$0	0% (delayed)			

Planning and design of a strain gauge monitoring system for Grist Mill Bridge (Hampden, ME)

Despite of lack of funding and prohibited access to our laboratories on campus, we have been communicating with Maine DOT (Dale Peabody, Joe Stilwell, and Jeffery Coffin) on the design of sensing systems for Grist Mill Bridge in Hampden, ME. Figure 1 shows the location and cross section of the bridge.

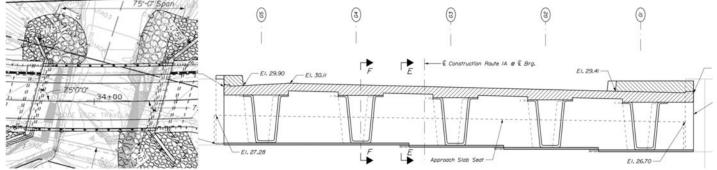


Fig. 1. Layout and cross section of Grist Mill Bridge (Hampden, ME) (Source: MaineDOT)

Figure 2 shows the detailed cross section view of one typical composite bridge girder. The bridge girder depth is 4'-2" and the width 3'-10". The bridge span is 75'.

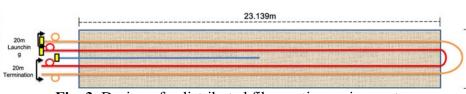


 Fig. 2. Detailed cross section of a composite bridge girder (Source: MaintDOT) and composite sample (by AIT Bridges)
 Fig. 3. Design of a distributed fiber optic sensing system

Since MaineDOT expressed a need to monitor a repaired section (at mid-span or 37'-6" from the support) on girder G5 in January 2020, we had started designing another strain gauge system comprising of six (tentatively) strain gauges on the interior of bridge girder G5. Until the end of this quarter, we have all items (e.g., stain gauges, data loggers, wires) identified, except the adhesives (epoxy) that needs to be tested on the composite material actually used in the bridge construction. We have received an approximately 1'-by-1' composite sample from the bridge manufacturer Advanced Infrastructure Technologies (AIT) Bridges in Brewer, ME in May 2020. We will use a composite sample (provided by AIT Bridges) to experimentally determine the type of adhesive/epoxy for this bridge monitoring project.

Design a distributed fiber optic sensing system for Grist Mill Bridge (Hampden, ME)

In the past quarter, we also designed a distributed fiber optic sensing system for Grist Mill Bridge, using a Brillion optical time domain reflectometer (BOTDR) and optical frequency domain reflectometry (OFDR). We have identified the type of optical fibers to be used in this distributed sensing system including a fabric substrate and three optical fibers. We will hold a virtual meeting with our collaborator Saint-Gobain (Northborough, MA) on the manufacturing schedule of our designed distributed fiber optic sensing system in the near future. Fig. 3 shows our current design of the distributed fiber optic sensing system.

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events							
Title	EventTypeLocationDate(s)						

Table 4: Publications and Submitted Papers and Reports						
TypeTitleCitationDateStatus						

Participants and Collaborators:

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members					
Individual Name Email Address		Department	Role in Research		
		Civil and	Project principle investigator;		
Tzuyang Yu	Tzuyang_Yu@UML.EDU	Environmental	overseeing all projects and working on		
		Engineering	radar imaging and interpretation		
		Civil and	Co-PI, bridge analysis and design		
Susan Faraji	Susan Faraji@UML.EDU	Environmental			
		Engineering			

		Electrical and	Co-PI, distributed fiber optic sensors
Xingwei Wang	Xingwei Wang@UML.EDU	Computer	and sensing systems for structural
		Engineering	health monitoring
Zhu Mao	7hu Maa@UML EDU	Mechanical	Co-PI, video-based motion sensors for
	Zhu_Mao@UML.EDU	Engineering	structural health monitoring
	William.Davids@MAINE.EDU	Civil and	Co-PI, design and analysis of composite
Bill Davids		Environmental	bridges, structural loading test, finite
		Engineering	element analysis
		Civil and	Co-PI, data analysis, data fusion
Ehsan Ghazanfari	Ehsan.Ghazanfari@UVM.EDU	Environmental	
		Engineering	

	Table 6: Student Participants during the reporting period					
Student Name	Email Address	Class	Major	Role in research		
Sanjana Vinayaka		Ph.D.	Civil and Environmental Engineering	Manufacturing of laboratory specimens, field radar imaging of structures, data analysis and signal processing		
Ronan Bates		B.S.	Civil and Environmental Engineering	Assistance in the preparation for bridge field tests		
Nasharie Peralta		B.S.	Civil and Environmental Engineering	Assistance in the preparation for bridge field tests		
BiondiVaccariello, Andres M		Ph.D.	Electrical and Computer Engineering	Optical Fiber sensor design		
Rui Wu		Ph.D.	Electrical and Computer Engineering	OFDR Sensor fabrication preliminary test		
Lidan Cao		Ph.D.	Electrical and Computer Engineering	Preliminary data output format analysis		

Table 7: Student Graduates					
Student Name	Role in Research	Degree	Graduation Date		

Table 8: Research Project Collaborators during the reporting period						
		Contribution to the Project				
Organization	Location	Financial Support	In-Kind Support	Facilities	Collaborative Research	Personnel Exchanges
Maine Department of Transportation (MaineDOT)	Augusta, Maine				Х	Х
AIT Bridges	Brewer, Maine		X	X	Х	Х

Since January, we have been communicating (via emails and virtual

meetings) with MaineDOT and AIT Bridges on the Hampden bridge monitoring task by incorporating their input and needs in our research tasks. On June 26, 2020, co-PI Faraji visited AIT Bridges (Wendell Harriman, Timothy Kenerson) in Brewer, ME to preliminary assess the feasibility of our sensor installation plan.

Changes:

Due to the significant impact of covid-19 pandemic in Massachusetts, we have been prohibited from accessing our research facility, equipment, and specimens since March 6, 2020. While the Massachusetts State Government has issued a four-phase plan in early May, the UML researchers working on Project C11 still cannot resume our planned laboratory and field tasks until now (June 26, 2020). We have taken the following actions to prepare ourselves on getting ready to return to our laboratories in the past quarter:

- 1. Online covid-19 safety training at UML Some UML researchers received a one-hour online training on June 3, 2020, required by the UML administration for everyone prior to returning to campus. Currently we are preparing a request form to apply for return to campus labs.
- 2. Acquisition of personal protection equipment (PPE) for all team members We have ordered sufficient amount of PPE (e.g., face masks, latex gloves) in May 2020 such that we can resume our project tasks on campus and in the field.

On the other hand, we will continue our research meetings that have been converted to a virtual platform since last quarter. We will use the virtual meeting platform for our educational and outreach activities, as well as meeting with MaineDOT and AIT Bridges.

Planned Activities:

In the next reporting period, we plan to resume the following tasks:

Task 1: Development of a finite element model of a composite/concrete bridge for strain range and distribution

- Task 2: Design of a distributed sensing system using strain and temperature
- Task 3: Establishment and modal calibration of baseline measurements using fiber optic, video motion, and electromagnetic sensors
- Task 4: Installation of distributed fiber optic cables on a composite/concrete bridge
- Task 5: Structural loading test and data collection
- Task 6: Monitoring of structural performance under service and environmental loads
- Task 7: Data fusion, visualization, and interpretation
- Task 8: Documentation, reporting, and dissemination