

Quarterly Progress Report:

Project Number and Title: 3.7 Development of general guidelines related to the effects of factors such as the bridge span range, range of pile length, roadway profile grade, and skew angle range on integral abutment bridges (IABs)

Research Area: Trust 3: New systems for longevity and constructability

PI: Susan Faraji, University of Massachusetts Lowell

Reporting Period: 10/1/2020 - 12/31/2020

Submission Date: 12/29/2020

Overview:

The overall objective of this research is to improve the guidelines for the modeling, design, and construction of integral abutment bridges (IABs) by completing the following tasks:

Task 1: Literature review and gathering of information

Task 2: Improve the guidelines for the modeling, design, and construction of IABs

Based on the input from a number of state DOTs (Mass, Vermont, and Maine), the following tasks have been undertaken:

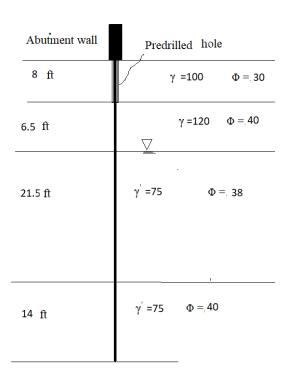
- (a) A study of the effect of the roadway profile grade on substructure;
- (b) A study of the constructability of pile-supported IABs at a site with shallow bedrock;
- (c) A study of the effect of skew angle along with other factors such as bridge span to width ratio, relative stiffness of substructure with respect to superstructure on the distribution of forces between superstructure and substructure;
- (d) Improve the finite-element modeling and analysis of IABs.

Task 3: Provide general guidelines in a final report regarding the topics studied.

Summary of the activities performed during the reporting period:

The focus of research in this quarter was on how the accuracy of finite-element modeling or lack of it will impact the substructure design of skewed IABs.

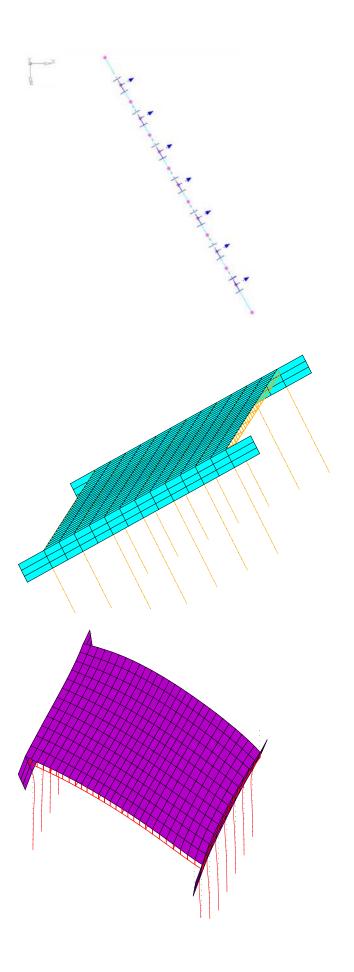
Task 1: Completed literature review.



Task 2(d):

• For a sample 70 feet long single non-skew integral abutment bridge (IAB) the displacement profiles and moment profiles for the HP piles were created to be compared (i) using the LPILE version 2019 software (ENSOFT, INC.) and (ii) using GTSTRUDL Version 2020 software (Intergraph Corporation) to create a three-dimensional finite element model of the sample bridge with nonlinear springs.

HP 12x74 pile Fy=50 ksi E=29000 Ksi L=75 ft
$$\Delta T=80^{0/F}$$
 $\alpha=6.5(10)^{-6}$ $P_{axial}=70$ kip


Layers	Depth, feet	Unit weight, Ib/in ³	Φ =, degree	Modulus of surcharge Ib/in ³	X at bottom of each layer
1	8	γ =100	30	250	96 in
2	6.5	γ =120	40	125	174 in
3	21.5	γ =75	38	125	432 in
4	14	γ =75	40	125	600 in

Task 2(d): The focus of the research in this quarter was on how the accuracy of finite—element modeling or lack of it will impact the substructure design of skewed IABs.

By using GTSTRUDL Version 2020 software (Intergraph Corporation) a three dimensional finite element model of a sample 70 feet long single IAB with a 30 degree skew was created to study the effect of modeling techniques on the design of the substructures of skewed IABs.

Task 3:

Documenting how the accuracy of finite-element modeling or lack of it for skewed IAB's will impact the substructure design for the final report.

All the research done to date falls within the parameters of the tasks listed.

Table 1: Task Progress							
Task Number	% Complete						
Task 1:	7/1/2018	12/31/2020	100%				
Task 2:	11/1/2019	12/31/2020	90%				
Task 3:	11/1/2019	12/31/2020	70%				
Overall Project:	1/1/2019	12/31/2020	85%				

Table 2: Budget Progress					
Project Budget Spend – Project to Date % Project to Date*					
\$200,943	\$98,432	85%			

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events						
Title	Event	Type	Location	Date(s)		
*The Effect of orientation of HP piles, sloping ground, and soil profile on the pile fixity points in IABs.	Annual TIDC Student Recognition Night	Webinar	Virtual	October 21, 2020		
Discussion of connections and modeling of IAB's	Presentations to Project Champion at Vermont Agency of Transportation	Sessions	Virtual	December 9, 2020 December 15, 2020		

^{*}Doctoral student Harsh Gandhi participated in the TIDC poster competition contest and ranked "first place" by peer voting.

Table 4: Publications and Submitted Papers and Reports							
Type	Type Title Citation Date Status						
**							

^{**} Two papers for submission to the Journal of Bridge Engineering and the Journal of Structural Engineering are under revision.

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members						
Individual Name	Email Address	Department	Role in Research			
Dr. Susan Faraji, Professor	Susan Faraji@uml.edu	Civil and	Project Principal Investigator			
		Environmental				
riolessor		Engineering				

	Table 6: Student Participants during the reporting period							
Student Name	Email Address	Class	Major	Role in research				
Harsh Gandhi		Doctoral Candidate	Civil and Environmental Engineering	Use of LPILE software for soil modeling and				
				literature search				

C4 J4 N	Dalada Danasah	D	Graduation
Student Name	Role in Research	Degree	Date
	Data collection, literature		2023
Harsh Gandhi *	search and field	Doctoral Candidate	

instrumentation

^{*} Harsh Gandhi has been ½ RA since September of 2020.

			Cont	ribution to tl		
Organization	Location	Financial	In-Kind	Facilities	Collaborative	Personnel
		Support	Support	racilities	Research	Exchanges
Vermont Agency			X			x
of Transportation	Vermont		(Bridge design)			(Technical
						Champion)
Hexagon PPM/Intergraph	Alabama		X (Computer software)			X (Technical
Corporation		·	·		·	support)

Technical Champion for this project:

Mr. James Lacroix PE

State Bridge Design Engineer

Vermont Agency of Transportation

James.Lacroix@vermont.gov

802-272-6862 Rev: 02.03.2020

Changes:

I was granted a 6 month, no-cost, extension. Therefore, the project's end date has been extended to June 30, 2021.

Planned Activities:

- Submission of two papers to the Journal of Bridge Engineering and the Journal of Structural Engineering.
- Presentation to the Boston society of Civil Engineering.
- Presentation to Vermont Agency of Transportation.
- Will continue working on the final report of the project based on the findings of the 1st two years of research.