

Quarterly Progress Report:

Project Number and Title: 2.5 - Development and Testing of High / Ultra-High Early Strength Concrete for durable Bridge Components and Connections

Research Area New materials for longevity and constructability

PI: Kay Wille, Ph.D., Associate Professor, University of Connecticut, Department of Civil & Environmental Engineering, Storrs, CT

Co-PI Ramesh Malla, Ph.D., F. ASCE, Professor, University of Connecticut, Department of Civil & Environmental

Engineering, Storrs, CT

Reporting Period: 09/31/2020– 12/30/2020

Submission Date: 12/30/2020

Overview: (Please answer each question individually)

- Emphasis has been placed on mixing and testing of New England UHPCs.
- Emphasized paste optimization in new UHPCs.
- Test equipment and machines have been set up for fiber pullout test and direct tensile test.

Provide context as to how these activities are helping achieve the overarching goal(s) of the project...

The research has been primarily focused on mixing of concrete with cement type II/V along with slag replacement of 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25% and the use of glass powder. In addition different fiber volume fractions have been added to the concrete. Specimens are in preparation for the freeze – thaw test and preliminary tests have been carried out to measure the air content. Investigation of permeability in concrete by measuring electrical resistivity has been continued. In this regards our research activities and testing procedures are aligned with Connecticut DOT's concept of low permeable concrete geared towards increased durability and thus longer service life. Current mixes use locally available materials in the New England area. Our preliminary test results are promising and confirm that we are heading in the right direction. This is an essential step towards the goal of this project to develop a non-proprietary cost-efficient UHPC for the New England area. The research will be continued by investigating other parameters such as fiber pullout strength and other durability properties.

Describe any accomplishments achieved under the project goals...

Several concrete mixes using type II/V cement along with slag replacement and use of glass powder have produced very good spread and the compressive strength, more than 20ksi in 28 days. In addition, we are able to achieve more than 1000 k-ohm-cm resistivity in two and half months with New England UHPCs, ultra-high performance concretes tailored to the New England area. This indicates that newly developed UHPCs are acting almost like rock. The consequences of COVID19 significantly set back our research activities and continues to impact us in our efficiency to carry out lab experiments and having fruitful in person discussions.

Complete the following tables to document the work toward each task and budget (add rows/remove rows as needed, make sure you complete the Overall Project progress row and include all tasks even if they have ended or have not been started)...

Table 1: Task Progress						
Task Number	Start Date	End Date	% Complete			
Task 1: Literature review	01/01/2019	01/01/2021	70%			
Task 2: Testing and Investigating the Performance of current HES	03/01/2019	01/01/2021	100%			
Task 3: Developing the next generation of HES mixture designs (Shifting towards New England UHPC)	01/01/2020	01/01/2021	40%			
Task 4: Knowledge transfer and practical application	12/01/2019	05/31/2021	10%			

Rev: 02.03.2020

Overall Project:	Enter Actual Start	Enter Planned/Actual End	
·		Piannea/Actual Ena	

Table 2: Budget Progress			
Project Budget Spend – Project to Date % Project to Date*			
-	-	-	

^{*}Include the date the budget is current to. Information in Table 2 is to be determined.

Describe any opportunities for training/professional development that have been provided...

Due to COVID19 the lab operates under strict COVID19 measures. Despite the challenging situation, the PI was able to welcome three undergraduate students, Cydney-Alexis Delarosa, Jeet Rosa and Ethan Beattie. In addition, the following undergraduate students were hired for these research activities: Paul Mooh Mooh Sr, Dominic Parciasepe, Salaah Dean Kanaan, Omar Badawi and Seerut Mir. They were trained and successfully worked during the limited lab time in the fall semester.

Describe any activities involving the dissemination of research results (be sure to include outputs, outcomes, and the ways in which the outcomes/outputs have had an impact during the reporting period. Please use the tables below for any Publications and Presentations in addition to the description of any other technology transfer efforts that took place during the reporting period.)... Use the tables below to complete information about conferences, workshops, publications, etc. List all other outputs, outcomes, and impacts after the tables (i.e. patent applications, technologies, techniques, licenses issued, and/or website addresses used to disseminate research findings).

Table 3: Presentations at Conferences, Workshops, Seminars, and Other Events					
Title	Event	Type	Location	Date(s)	
The Effects of Resonant Acoustic Mixing on the Microstructure of UHPC		Journal		Currently working on it	
Development and Testing of High / Ultra-High Early Strength Concrete for durable Bridge Components and Connections	TIDC Annual Student Poster Contest	Poster Presentation	webEx – virtual meeting	10/01/2020	

Table 4: Publications and Submitted Papers and Reports							
Type Title Citation Date Status							

Encouraged to add figures that may be useful (especially for the website)...

Following are the test set up for the mechanical and durability properties investigation:

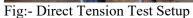


Fig:- Fiber Pullout Test Setup

Fig:- Air Content Test Apparatus

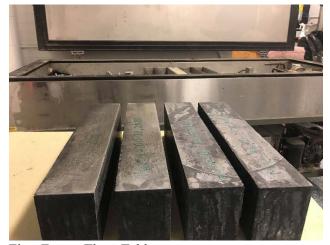


Fig:- Freeze Thaw Table

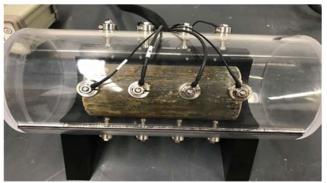


Fig:- Surface Resistivity Test Setup

Participants and Collaborators:

Use the table below to list all individuals who have worked on the project.

Table 5: Active Principal Investigators, faculty, administrators, and Management Team Members					
Individual Name	Email Address	Department	Role in Research		
Kay Wille, Ph.D., Associate Professor	kay.wille@uconn.edu	Civil Engineering	Principal Investigator		

Ramesh Malla, Ph.D., F. ASCE, Professor	ramesh.malla@uconn.edu	Civil Engineering	Co- Principal Investigator
---	------------------------	-------------------	-------------------------------

Use the table below to list all students who have participated in the project during the reporting. (This includes all paid, unpaid, intern, independent study, or any other student that participated in this project.)

Table 6: Student Participants during the reporting period				
Student Name	Email Address	Class	Major	Role in research
Christopher Boisvert- Cotulio		Master Student	Civil Engineering	Grad-RA
Jeet Rosa		Undergraduate- Senior	Material Science	Undergrad-RA
Cydney-Alexis Delarosa		Undergraduate- Junior	Biomedical Engineering	Undergrad-RA
Dominic Parciasepe		Undergraduate- Sophomore	Environmental Engineering	Undergrad-RA
Paul Mooh Mooh Sr		Undergraduate- Junior	ACES	Undergrad-RA
Salaah Dean Kanaan		4 th sem	Management Information Systems	Undergrad-RA
Omar Badawi		Undergraduate- Junior	Political Science	Undergrad-RA
Seerut Mir		Undergraduate- freshman	Physiology and Neurobiology	Undergrad-RA
Corey Walker		Undergraduate-	Civil Engineering	Undergrad-RA
Ethan Beattie		Undergraduate- Senior	Civil Engineering	Undergrad-RA

Use the table below to list any students who worked on this project and graduated during this reporting period.

Student Name	Role in Research	Degree	Graduation Date
D.: D.:	T 11 1 1 1	DI D	TTD D

Bijaya Rai Leading the research works Ph.D. TBD

Use the table below to list organizations have been involved as partners on this project and their contribution to the project.

Table 8: Research Project Collaborators during the reporting period							
		Contri	ribution to the Project				
Organization Location	Financial	In-Kind	Easili4ias	Collaborative	Personnel		
		Support	Facilities	Research	Exchanges		

List all other outputs, outcomes, and impacts here (i.e. patent applications, technologies, techniques, licenses issued, and/or website addresses used to disseminate research findings). Please be sure to provide detailed information about each item as with the tables above.

Not applicable at this time.

Have other collaborators or contacts been involved? If so, who and how? (This would include collaborations with others within the lead or partner universities; especially interdepartmental or interdisciplinary collaborations.)

Contacts have been made with a few cement suppliers: white cement and OPC I/II from Lehigh and another white cement, slag cement, and OPC type II/V from Lafarge Holcim.

Who is the Technical Champion for this project?

Name: Mary Baker

Title:

Organization: Connecticut DOT

Location (City & State): Newington, CT Email Address: Mary.Baker@ct.gov

Changes:

Discuss any actual or anticipated problems or delays and actions or plans to resolve them...

Research works are continue under the strict COVID19 rules and regulations. The new normal is still affecting the research in many ways; everyone has to follow the COVID lab safety plan with a restricted time schedule, social distancing while performing the experiments, contact tracing, and many other regulations to prevent the spread of the virus.

Discuss any changes in approach and the reasons for the change...

Research activities had been shifted towards addressing the consequences due to the COVID19 pandemic.

Planned Activities:

Description of future activities over the coming months.

Right now, the research is mainly focused on paste optimization and investigation of mechanical properties such as compressive strength and direct tensile strength and other durability properties such as surface resistivity, freeze thaw durability, air content investigation in the New England UHPCs. Therefore, other planned activities include as follows:

- Characterizing the pull out behavior of various fibers embedded in UHPC
- Continue investigating the durability of various UHPC based on freeze thaw conditions
- Continue obtaining locally available materials for tailoring the UHPC for the New England area.

Rev: 02.03.2020